Simulink® Real-Time™
|/O Reference

7

MATLAB&SIMULINK

zzzzzz ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ I/O Reference
© COPYRIGHT 2000-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

November 2000
June 2001
September 2001
July 2002
September 2002
September 2003
June 2004
August 2004
October 2004
November 2004
March 2005
September 2005
March 2006
May 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Version 1.1 (Release 12)
Revised for Version 1.2 (Release 12.1)
Revised for Version 1.3 (Release 12.1+)
Revised for Version 2 (Release 13)
Revised for Version 2.0.1 (Release 13)
Revised for Version 2.0.1 (Release 13SPI)
Revised for Version 2.5 (Release 14)
Revised for Version 2.6 (Release 14+)
Revised for Version 2.6.1 (Release 14SP1)
Revised for Version 2.7 (Release 14SP1+)
Revised for Version 2.7.2 (Release 14SP2)
Revised for Version 2.8 (Release 14SP3)
Revised for Version 2.9 (Release 2006a)
Revised for Version 3.0 (Release 2006a+)
Revised for Version 3.1 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.3 (Release 2007b)
Revised for Version 3.4 (Release 2008a)
Revised for Version 4.0 (Release 2008b)
Revised for Version 4.1 (Release 2009a)
Revised for Version 4.2 (Release 2009b)
Revised for Version 4.3 (Release 2010a)
Revised for Version 4.4 (Release 2010b)
Revised for Version 5.0 (Release 2011a)
Revised for Version 5.1 (Release 2011b)
Revised for Version 5.2 (Release 2012a)
Revised for Version 5.3 (Release 2012b)
Revised for Version 5.4 (Release 2013a)
Revised for Version 5.5 (Release 2013b)
Revised for Version 6.0 (Release 2014a)
Revised for Version 6.1 (Release 2014b)
Revised for Version 6.2 (Release 2015a)
Revised for Version 6.3 (Release 2015b)
Revised for Version 6.4 (Release 2016a)
Revised for Version 6.5 (Release 2016b)
Revised for Version 6.6 (Release 2017a)
Revised for Version 6.7 (Release 2017b)
Revised for Version 6.8 (Release 2018a)
Revised for Version 6.9 (Release 2018b)
Revised for Version 6.10 (Release 2019a)
Revised for Version 6.11 (Release 2019b)
Revised for Version 6.12 (Release 2020a)

Contents

Introduction, RS-232

Simulink Real-Time I/O Library

1]

I/ODriver Blocks 1-2
Speedgoat /O Modules 1-2
Third-Party Driver Blocks i, 1-2
[/ODriver Block Library 1-2
Memory-Mapped Devicest 1-3
ISABUusI/ODevICeSot e e e e 1-3
PCIBUuSI/ODEVICESo i i e e e e e e 1-4
Simulink Real-Time I/O Driver Structures 1-4
Simulink Real-Time Support and SimState 1-6
PWM and FM Driver Block Notes 1-6
Driver Block Documentation 1-7

Add 1/0 Blocks to Simulink Model 1-9

Defining I/O Block Parameters 1-11

Serial Communications Support

RS-232 Serial Communication 2-2
Serial Connections for RS-232 2-2

RS-232 Composite Drivers 2-3
Adding RS-232 Blocks 2-3
Building and Running the Real-Time Application 2-6
Simulink Real-Time RS-232 Reference 2-6

Serial Communications Support: Blocks

3|

Serial Communications Support: Internal Blocks

4

CAN, Encoders, Ethernet, EtherCAT

CAN Utility Blocks

S|

Model-Based Ethernet Communications Support

6/

Model-Based Ethernet Communications
What Is Model-Based Ethernet Communications?
Ethernet Hardware i
PCIBus and Slot Numbers
MAC AdATeSSES . . o o v o e et e e e
Network Buffer Pointers
Filter Type and Filter Address Blocks
Execution Priority e
Simulink Real-Time Ethernet Block Library

cscscscsclscacacscs
W WWWiNNDNDN

Ethernet Blocks

7

Network Buffer Library for Model-Based Ethernet
Communications Support

8|

Network Buffer Blocks 8-2

Contents

Network Buffer Library Blocks

9

Model-Based EtherCAT Communications Support

10|

Modeling EtherCAT Networks 10-2
Blocksand Tasks 10-2
Order of Network Events 10-3

Install TWINCAT 3 e 10-5

Hardware Setup Requirements for TwinCAT 3 10-6

Configure EtherCAT Network with TwinCAT 3 10-7
Scan EtherCAT Network 10-7
Configure EtherCAT Master Node Data 10-7
Export and Save EtherCAT Configuration with TwinCAT 3 10-8

Install EtherCAT Network for Execution 10-10

Configure EtherCAT Master Node Model 10-11
Configure EtherCAT InitBlock 10-11
Configure EtherCAT PDO Receive Blocks 10-12
Configure EtherCAT PDO Transmit Blocks 10-13
Configure EtherCAT Model Configuration Parameters 10-14

EtherCAT Distributed Clock Algorithm 10-16
Master Shift Mode 10-16
Bus Shift Mode i 10-18
Limitations i e 10-20

Fixed-Step Size Derivation 10-21

EtherCAT Protocol Mapping 10-22

EtherCAT Configurator Component Mapping 10-23

EtherCAT DataTypes i, 10-24

EtherCAT Init Block DC Error Values 10-25

EtherCAT Error Codes, 10-26

viii

EtherCAT Blocks

11|

TCP, UDP

Real-Time TCP Communication Support

12

TCP Transport Protocol 12-2
Troubleshoot TCP Block Configuration 12-4
What This Issue Meanscouviiiiiinnnnnnnnnnnn.. 12-4

Try This Workaround, 12-4
TCP Blocks

13|

Real-Time UDP Communication Support

14

UDP Transport Protocol 14-2
UDP Data Exchange with Shared Ethernet Board 14-4
Data Transferred 14-4
Set Up udpsendreceiveA 14-5
Set UpudpsendreceiveB 14-6
UDP Communication Setup 14-9
UDP and Variable-Size Signals 14-10
Troubleshoot UDP Block Configuration 14-11
What ThisIssueMeanscc0iiiiiinnnennnn. 14-11
Try This Workaround iinn... 14-11

Contents

Real-Time UDP Blocks

15|

Parallel Ports, PTP, SAE J1939, Shared Memory

Parallel Ports

16

Using Parallel Ports 16-2
Introduction 16-2
Using the Parallel Port as an Interrupt Source 16-3
Using Add-On Parallel Port Boards 16-3

Parallel Port Blocks

17|

Precision Time Protocol

18

Precision Time Protocolcoiuun. 18-2
Synchronize Timestamps Across Data-Gathering Network 18-4
Data Acquisition and Data Analysis Example Description 18-14
Data Acquisition Application 18-14
Data Analysis Application 18-16
Troubleshoot Precision Time Protocol Configuration 18-21
What ThisIssueMeans, 18-21
Try This Workaround, 18-21
Prerequisites, Limitations, and Unsupported Features 18-24
Prerequisites 18-24
Limitations e 18-24
Unsupported Features 18-25

ix

X

Contents

Precision Time Protocol Blocks

19

SAE J1939

20

SAE J1939 Blocks 20-2

SAE J1939 Blocks

21

Shared Memory Support

22

Create GE Fanuc Shared Partitions 22-2
Initialize GE Fanuc Shared Nodes 22-4
GE Fanuc Shared Partition Structure 22-5
GE Fanuc Shared Node Initialization Structure 22-6
Board Mode e 22-6
Board Interrupts 22-7
Board Node ID 22-8
Create Curtiss-Wright Shared Partitions 22-10
Initialize Curtiss-Wright Shared Nodes 22-12
Curtiss-Wright Shared Partition Structure 22-13
Alignment Examples 22-15
Curtiss-Wright Shared Node Initialization Structure 22-17
Board Mode i 22-17
Board Timeout i 22-18
Board Data Filter 22-18
Virtual Paging 22-19
Board Interrupts 22-19

Video, XCP

Video Image Processing

23

Process Video Images with Simulink Real-Time
USB Video Display on Development Computer
USB Video Display on Target Computer

Serial Camera Configuration

Video Blocks

24

XCP Master Mode

25

XCP MasterMode

XCP Blocks

26

Speedgoat

Speedgoat Support

27

Speedgoat Target Computers and Support

Speedgoat I/O Hardware

Speedgoat Communication Protocols

xi

xii

UEI, Asynchronous Events

Asynchronous Events

28

Asynchronous Event Support 28-2
Adding an Asynchronous Event 28-2
Asynchronous Interrupt Example 28-3

Asynchronous Event: Blocks

29

Logitech

Logitech Blocks

30

Utility Drivers, Target Management, Displays and Logging

Utility Blocks

31

Target Management, Display, and Logging Blocks

32

Contents

Introduction, RS-232

13

Simulink Real-Time I/O Library

* “I/O Driver Blocks” on page 1-2
* “Add I/O Blocks to Simulink Model” on page 1-9
* “Defining I/O Block Parameters” on page 1-11

1

Simulink Real-Time 1/O Library

I/0 Driver Blocks

1-2

In this section...

“Speedgoat I/O Modules” on page 1-2

“Third-Party Driver Blocks” on page 1-2

“I/O Driver Block Library” on page 1-2
“Memory-Mapped Devices” on page 1-3

“ISA Bus I/O Devices” on page 1-3

“PCI Bus 1/O Devices” on page 1-4

“ Simulink Real-Time I/O Driver Structures” on page 1-4
“ Simulink Real-Time Support and SimState” on page 1-6
“PWM and FM Driver Block Notes” on page 1-6

“Driver Block Documentation” on page 1-7

The Simulink Real-Time environment is a solution for prototyping and testing real-time systems using
a desktop computer. To support this solution, the software allows you to add I/O blocks to your model.
The blocks of the Simulink Real-Time library provide a particular function of an I/O module. By using
I/0 blocks in your model, you can generate executable code tuned specifically to your I/O
requirements.

You add I/O driver blocks to your Simulink model to connect your model to I/O modules (I/O boards).
These I/0 modules then connect to the sensors and actuators in the physical system.

Speedgoat 1/0 Modules

Speedgoat real-time target machines are available with various I/O modules. See “Speedgoat I/O
Hardware” on page 27-2.

Third-Party Driver Blocks

In addition to the blocks contained in the Simulink Real-Time library, you can also use third-party
driver blocks in your Simulink Real-Time model. The description of these blocks is beyond the scope
of the Simulink Real-Time documentation. See the provider of the third-party driver blocks for
information on those boards and driver blocks.

1/O Driver Block Library

A driver block does not represent an entire board, but an I/O section supported by a board.
Therefore, the Simulink Real-Time library can have more than one block for each physical board. I/O
driver blocks are written as C-code S-functions (noninlined S-functions). The source code for the C-
code S-functions is included with the Simulink Real-Time software.

Note, if your model contains I/O blocks, take I/O latency values into account for the model sample
time.

To find latency values for Speedgoat boards, contact Speedgoat technical support.

1/0 Driver Blocks

The Simulink Real-Time system supports PCI and ISA (PC/104) buses. If the bus type is not indicated
in the driver block number, determine the bus type of the block by examining the block parameter
dialog box. The last parameter is either a PCI slot, for PCI boards, or a base address, for ISA (PC/104)
boards.

You can open the I/O device driver library with the MATLAB® command slrtlib. The library
slrtlib contains sublibraries grouped by the type of I/O function they provide.

This library also contains the following blocks:

* Simulink Real-Time Driver Examples — When you double-click this block, the Demeos tab in the
MATLAB Help Navigator opens, displaying the Simulink Real-Time examples and example groups.

* Help for Simulink Real-Time — When you double-click this block, the Simulink Real-Time roadmap
page is displayed. You can access the Simulink Real-Time documentation with this block.

Note The Simulink Real-Time documentation describes only the Simulink Real-Time blocks. It does
not describe the actual board. Refer to the board manufacturer documentation for information about
the boards.

When you double-click one of I/O block groups, the sublibrary opens, displaying a list grouped by
manufacturer. Double-clicking one of the manufacturer groups displays the I/O device driver blocks
for the specified I/O functionality (for example, A/D, D/A, Digital Inputs, and Digital Outputs).

When you double-click one of the blocks, a Block Parameters dialog box opens, allowing you to enter
system-specific parameters. Parameters typically include

* Sample time

* Number of channels

* Voltage range

» PCI slot (PCI boards)

* Base address (ISA/104 boards)

Memory-Mapped Devices

Simulink Real-Time reserves a 112-kB memory space for memory-mapped devices in the address
range:

CO000 - DBFFF
Drivers for some memory-mapped devices, such as the Softing CAN-AC2-104 board, support an

address range higher than the range that Simulink Real-Time supports. Specify an address range
supported by both the device driver and the Simulink Real-Time software.

ISA Bus 1/0 Devices

There are two types of ISA boards:

* Jumper addressable ISA cards
* PnP (Plug and Play) ISA cards

1-3

1

Simulink Real-Time 1/O Library

1-4

The Simulink Real-Time software only supports jumper addressable ISA cards (non-PnP ISA boards)
where you have to set the base address manually.

PCl Bus 1/0 Devices

The Simulink Real-Time I/O library supports I/O boards with a PCI bus. During the boot process, the
BIOS creates a conflict-free configuration of base addresses and interrupt lines for the PCI devices in
the target system. You do not need to define base address information in the dialog boxes of the
drivers.

PCI device driver blocks have an additional entry in their dialog boxes. This entry is called PCI Slot
(-1 Autodetect) and allows you to use several identical PCI boards within one target system. This
entry uses a default value of - 1, which allows the driver to search the entire PCI bus to find the
board. If you specify a single number, X, greater than 0, the driver uses the board in bus 0, slot X.
When more than one board of the same type is found, you must use a designated slot number and
avoid the use of autodetection. For manually setting the slot number, you use a number greater than
or equal to 0. If the board cannot locate this slot in the target computer, your real-time application
will generate an error message after downloading.

To set PCI Slot (-1 Autodetect) to a value equal to or greater than 0, you must identify which
board you want on the target computer. To identify the board, find the manufacturer identification
number (Vendor ID) and board identification number (Device ID) of the boards supported by the I/O
library. When the target is booted, the BIOS is executed and the target computer monitor shows
parameters for the PCI boards installed on the target computer. For example:

Bus Device Function Vendor ID Device ID Device Class IRQ

Number Number Number

0 4 1 8086 7111 IDE controller 14/15

0 4 2 8086 7112 Serial bus 10
controller

0 11 0 1307 000B Unknown PCI N/A
device

1 0 0 12D2 0018 Display 11
controller

In this example, the third line indicates the location of the Measurement Computing™ PCI-DIO48
board. This location is known since the Measurement Computing vendor ID is 0x1307 and the device
ID is 0xb. In this case, you can see that the Measurement Computing board is plugged into PCI slot
11 (Device Number). Enter this value in the dialog box entry in your I/O device driver for each model
that uses this I/O device.

Simulink Real-Time 1/0O Driver Structures

Properties for Simulink Real-Time I/O drivers are defined using the parameter dialog box associated
with each Simulink block. However, for more advanced drivers, the available fields defined by text
boxes, check boxes, and pull-down lists are inadequate to define the behavior of the driver. In such
cases, you must provide a more textual description to indicate what the driver has to do at run time.
Textual in this context refers to a programming-language-like syntax and style.

The Simulink Real-Time software currently uses a character vector description contained in message
structures for the conventional RS-232 drivers.

1/0 Driver Blocks

What Is a Message Structure?

A message structure is a MATLAB array with each cell containing one complete message (command).
A message consists of one or more statements.

First Message Second Message Third Message

Message(1l).field Message(2).field Message(3).field
Message(1l).field Message(2).field Message(3).field
Message(1l).field Message(2).field Message(3).field

Syntax of a Message Statement
Each statement in a message has the following format:
Structure name(index).field name = <field character vector or value>

The driver defines the field names. Enter them with upper- and lowercase letters as defined.
However, you can specify your own structure name and enter that name into the driver parameter
dialog box.

Creating a Message Structure

You could enter the message structure directly in the edit field of the driver parameter dialog box.
But because the message structure is a large array, direct entry becomes cumbersome easily.

A better way is to define the message structure as a variable in the MATLAB workspace and pass the
variable name to the driver. For example, to initialize an external A/D module and acquire a value
during each sample interval, create a script file with the following statements:

Message(1l).senddata='InitADConv, Channel %d'
Message(1l) .inputports=[1]

Message(1l).recdata=""

Message(1l) .outputports=[]

Message(2) .senddata='Wait and Read converted Value'
Message(2) .inputports=[]

Message(2) .recdata="'%f"

Message(2) .outputports=[1]

This approach is different from other Simulink Real-Time driver blocks:

* The script containing the definition of the message structure has to be executed before the model
is opened.

After creating your Simulink model and message script, set the preload function of the Simulink
model to load the script file the next time you open the model. In the Command Window, type

set param(gcs, 'PreLoadFcn', 'script name')

* When you move or copy the model file to a new folder, you must also move or copy the script
defining the message structure.

During each sample interval, the driver block locates the message structure, interprets the messages,
and executes the command defined by each message.

1-5

1

Simulink Real-Time 1/O Library

1-6

For detailed information on the fields in an RS-232 message structure, see “Simulink Real-Time
RS-232 Reference” on page 2-6,

Simulink Real-Time Support and SimState

You can save complete model simulation states while simulating, on a development computer, a
Simulink model that contains some Simulink Real-Time blocks. The software does not support this
behavior when executing such a model on the target computer.

For this operation, set the Save complete SimState in final state check box in the Data Import/
Export pane of the Configuration Parameters dialog box. If your model contains the following blocks,
you cannot save complete model simulation states while simulating on the development computer.

* ASCII Encode

* ASCII Decode

* Async Buffer Read

* Async Buffer Write

* Baseboard Serial

* Baseboard Serial F

» Bit Packing (Utilities library)

* Bit Unpacking (Utilities library)

* Byte Packing (Utilities library)

* Byte Unpacking (Utilities library)

* Create Ethernet Packet (Ethernet library)

* FIFO bin read

» FIFO ASCII read

* FIFO write

* UDP Receive

* UDP Send

To prevent these messages, clear the Save complete SimState in final state check box in the Data
Import/Export node of the Configuration Parameters dialog box.

PWM and FM Driver Block Notes

In PWM and FM driver blocks, your control over the output frequency and duty cycle is not precise.
Although the base frequency value is exact, the way the base frequency is specified affects the output
frequency and duty cycle.

At the beginning of each sample time, the block reads the current input signal values. It then
computes two unsigned 16-bit integers, n and m, from the signal values and the block parameters.
During the sample time, the block holds the output signal:

1 High for m cycles of the base frequency

2 Low for the next n-m cycles

3 High for the next m cycles

1/0 Driver Blocks

R
(PR,

For a base frequency b, this algorithm results in a rectangular output signal of frequency b/n and
duty cycle m/n. Because m and n must be integers, it is not possible to provide a continuous range of
output frequencies and duty cycles with perfect exactness.

For example, assume that you want to configure an FM block with a duty cycle (m/n) of 1/2. The
input signal f to this block is a relative frequency that specifies an output frequency of b x f.
However, m and n must be integers. Therefore, you cannot always find values of m and n (duty cycle
m/n = 1/2) such that:

f = Db/n
exactly and
n=2%m

exactly. You can find an exact match only when the input signal f equals 1/4, 1/6, 1/8, and so forth.
The output frequencies for the intervening input signal f values are approximate. The errors are
smaller as f approaches 0 and larger as f approaches 1.

To achieve the smallest margin of error, specify the largest possible base frequency. The fact that n
and m must be 16-bit integers imposes a lower limit of:

b / (2 16 - 1)

on the frequencies that can be generated using a given base frequency.

Driver Block Documentation

The typical Simulink Real-Time block documentation briefly describes the supported board, then
describes the parameters for each of the blocks that support the board. Included in the
documentation for each board is a board characteristics table. Board characteristics tables can
include the following information:

Characteristic Specifies...

Board name Name of the board supported by the blocks. For example, Speedgoat
10333.

Manufacturer Manufacturer of the board. For example, Speedgoat.

Bus type Bus that is used by the board. For example, PCI or PC/104.

Access method Whether the board is memory mapped or I/O mapped.

1-7

1

Simulink Real-Time 1/O Library

1-8

Characteristic

Specifies...

Multiple block instance

Whether you can use multiple blocks for the same function on the same

support board. For example, different blocks for different channels of an A/D
device.
Multiple board support |Whether you can use multiple boards of the same type in one real-time

application.

Add 1/0 Blocks to Simulink Model

Add 1/0 Blocks to Simulink Model

You can transform a Simulink model to a Simulink Real-Time model that accesses I/O drivers by using
the Simulink Real-Time block library or by using the Simulink Real-Time: Speedgoat I/O Driver
Library. In the Simulink Real-Time block library, the highest hierarchical level in the library lists I/O
function groups. The second level lists board manufacturer groups. The manufacturer groups contain
the driver blocks for specific boards.

This example uses the Simulink model ex slrt osc to show how to replace Simulink blocks with
Simulink Real-Time I/O blocks (see open system(docpath(fullfile(docroot, 'toolbox',
'xpc', 'examples', 'ex slrt osc')))).

1 To browse the Simulink Real-Time block library, open the Library: slrtlib window. In the
Command Window, type:

slrtlib

2 To browse the Simulink Real-Time: Speedgoat I/O Driver Library, open the Library:
speedgoatlib window. In the Command Window, type

speedgoatlib
3 In the Simulink Editor, type:

ex_slrt osc

The Simulink block diagram opens for the model ex slrt osc.

ooon 1
0o SigGen " s+ l
Signal Transfer Fcn
Generator

Tutorial modal

4 Open the Simulink Library Browser. Select Simulink Real-Time: Speedgoat I/O Driver
Library > I0101. Drag each of these blocks to the Simulink block diagram: Speedgoat 10101
Analog input block, Speedgoat 10101 Analog output block, and Speedgoat 10101 Setup.

The Simulink editor adds the new I/O blocks to your model.

5 Remove the Signal Generator block and add the Speedgoat I0101 Analog input block in its place.
Remove the Scope block and add the Speedgoat 10101 Analog output block in its place.

6 Save the model with a new name, such as ex _slrt iob osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex slrt iob osc')))):

1-9

1 simulink Real-Time /O Library

Speedgoat
10101
Setup
Maodule 1D: 1
Satup
Spesdgoat
10101
Analog input
Madule 1D 1 bigGan numis) -
" den(s) XirFno : 2
3 Speedgoat
4 10101
Transfer Fcn 5 Analog output
Li] Maodule D 1
7
B
Analog input -) . Analog output
Simulink Real-Time tutonal model

You cannot run this model unless the required I/O board is installed in your target computer.
However, you can substitute driver blocks for another I/O board that is installed in the target

computer.

Your next task is to define the I/O block parameters. See “Defining I/O Block Parameters” on page 1-
11.

1-10

Defining I/O Block Parameters

Defining 1/0 Block Parameters

The I/O block parameters define values for your physical I/O boards. For example, I/O block
parameters include channel numbers for multichannel boards, input and output voltage ranges, and
sample time.

This procedure uses the Simulink model ex slrt osc

(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',

'ex _slrt osc')))). It assumes that you have added an analog input block, an analog output
block, and the corresponding setup block to your model. To add an I/O block, see “Add I/O Blocks to
Simulink Model” on page 1-9.

1 In the Simulink Editor, double-click the input block labeled Speedgoat 10101 Analog Input.

The dialog box for the A/D converter opens.
2 Fill in the dialog box. For example, enter the sample time you entered for the fixed step size in

Configuration Parameters > Solver.
Block Parameters: Analog input et
ad_I0101 (mask) (link)

Speedgoat driver block
10101 - Analog input

© 2007 - 2017, Speedgoat GmbH, www.speedgoat.com

Parameters

[0101 module identifier: |1 -
Output mode | Values -
Sample time:

0.001

Cancel Help Apply

3 In the Simulink Editor, double-click the output block labeled Speedgoat I0101 Analog
Output.

The dialog box for the D/A converter opens.

4 Fill in the dialog box. For example, enter the same sample time you entered for the fixed step size
in Configuration Parameters > Solver.

1-11

1 simulink Real-Time 1/0 Library

Block Parameters: Analog output et
da_I0101 (mask) (link)

Speedgoat driver block
10101 - Analog output

© 2007 - 2017, Speedgoat GmbH, www.speedgoat.com
Parameters

10101 identifier;: |1 -

Sampletime:

0.001

Cancel Help Apply

5 In the Simulink Editor, double-click the output block labeled Speedgoat 10101 Setup.

The dialog box for the converter setup opens.
6 Fill in the dialog box. For example, enter the PCI slot for this PCI-bus board.

Block Parameters: Setup et
setup_I0101 (mask) (link)

Speedgoat driver block
10101 - Setup

© 2007 - 2017, Speedgoat GmbH, www.speedgoat.com

Parameters
Parameter group: | Module setup -
10101 module identifier: |1 -

PCI slot (-1: autosearch):
-1

Cancel Help Apply

If you change the target object property SampleTime, the sample times you entered in both of the
I/O blocks are set to the new value. The step size you entered in the Configuration Parameters dialog
box remains unchanged.

1-12

Serial Communications Support

* “RS-232 Serial Communication” on page 2-2
* “RS-232 Composite Drivers” on page 2-3

2 Serial Communications Support

RS-232 Serial Communication

2-2

The Simulink Real-Time software supports RS-232 serial communication by using the serial ports on
the target computer mainboard as the RS-232 I/O devices. You can initiate RS-232 communication
with these ports and the accompanying Simulink Real-Time drivers.

The Simulink Real-Time block library supplies composite drivers to support RS-232 communication
(see “RS-232 Composite Drivers” on page 2-3). The composite drivers support RS-232
communication in asynchronous binary mode. They provide a simple ASCII encode/decode for the
send and receive RS-232 blocks.

These drivers are described as composite because the library represents each functional piece of the
driver as a Simulink block. They are constructed with blocks from the RS-232 internal library. The
internal blocks are composite blocks for the Mainboard Baseboard series.

Do not use the RS-232 internal blocks directly. They are controlled from the mask parameters dialog
box for the subsystem in which they are used.

Serial Connections for RS-232

The Simulink Real-Time software supports serial communication with the COM1 and COM2 ports on
the target computer.

Target
computer

RS-232

connection
RS-232
device

Your real-time applications can use these RS-232 ports as I/O devices. With the typical DTE/DCE
configuration of the RS-232 device, the target computer is connected to the device with a null modem
cable.

See Also

ASCII Decode | ASCII Decode V2 | ASCII Encode | FIFO Read | FIFO Read Binary | FIFO Read HDRS |
FIFO Write | Modem Control | Modem Status | RS-232 Send/Receive | RS-232 Send/Receive FIFO |
RS232 State

RS-232 Composite Drivers

RS-232 Composite Drivers

This topic describes the components that make up the RS-232 composite drivers, and how you can
create a model using these drivers. These drivers perform RS-232 asynchronous communications.

The Simulink Real-Time software provides composite drivers that support the target computer (main
board) serial ports.

These drivers distribute the functionality of the device across several subsystems and blocks. For
most RS-232 requirements, you can use these RS-232 drivers as they are implemented. However, if
you must customize the Simulink Real-Time RS-232 drivers, the composite nature of the drivers
enables you to do so.

Adding RS-232 Blocks

You add RS-232 subsystem blocks to your Simulink model when you want to use the serial ports on
the target computer for serial I/0.

After you create a Simulink model, you can add Simulink Real-Time driver blocks and configure those
blocks. The following procedure describes how to use the serial ports on the target computer for I/O
with the composite drivers.

Before you start, decide what COM port combinations you want to use. The example has you
configure the Baseboard Send/Receive block. To configure this block, first select serial port pairs.
This parameter specifies the ports for which you are defining transmit and receive. You have a choice
of the following:

« Coml/none

+ Com2/none

« Coml/Com3

* Com2/Com4

* none/Com3

* none/Com4

* Custom

If you select either the Com1/Com3 or Com2/Com4 pair, check that the port pair shares an interrupt.
If the port pair does not share an interrupt, you cannot use the two ports as a pair.

Alternatively, you can define a Custom port pair. A Custom port pair is one that does not match the
existing combinations of port pairs. When you select Custom, the dialog box allows you to configure
your own port pair. For example, you can set the IRQ and two addresses for the port pair. If one of the
ports is not used, set that address to 0.

Normally, the ports are set to the following:

+ COM1 — 0x3F8, IRQ 4
+ COM2 — 0x2F8,IRQ 3
*+ COM3 — 0x3ES8 (if present), IRQ 4
* COM4 — 0x2ES8 (if present), IRQ 3

2-3

2 Serial Communications Support

2-4

In a Custom port pair, either set one or both ports of the pair to addresses other than these
conventions, or assign a different IRQ value. Some boards allow you to set the IRQ numbers
independently.

If you select the port pairs Com1/Com3 or Com2/Com4, you must include one Send/Receive subsystem
block in the model. If you use COM1 and COM2, or COM1 and a custom port pair, you must include
two Send/Receive blocks in the model.

The following example shows two models, one that uses a standard Com1/Com3 port pair, and one
that uses custom port pairs:

1 Inthe Command Window, type

slrtlib

The Simulink Real-Time driver block library opens.
2 Double-click the RS-232 group block.

A window with blocks for RS-232 composite drivers opens.

Alternatively, you can access the Simulink Real-Time block library from the Simulink Library
Browser. In the Simulink Editor, on the Real-Time tab, from the Prepare section, click Library
Browser. In the left pane, double-click Simulink Real-Time, and then click RS232.

3 Drag an ASCII Encode block to your Simulink model. This block encodes input for the RS-232
Send Receive block.

4 Configure this block.

Drag an ASCII Decode block to your Simulink model. This block decodes output from the RS-232
Send Receive block.

Configure this block.
Double-click the Mainboard group block.

Depending on your port pair configuration, drag one or two Baseboard RS-232 Send/Receive
blocks to your Simulink model.

9 Double-click the Baseboard RS-232 Send/Receive block.
10 Configure this block. Note the following Parameter group values:
* When you select Board Setup, make sure that the Configuration value is consistent with
your RS-232 serial port configuration.

* When you select Receive Setup, for each channel, set the value of the Receive Sample
Time parameter to a sample time value faster than the data being sent. Do not leave this
value at - 1. Set this parameter for all channels, including channels that you are not using;
otherwise, you receive an error when generating code for the real-time application.

11 Add a Pulse Generator block and a target Scope block.
12 Configure the Pulse Generator block so that its Pulse type is Sample based.

The dialog box changes to display a Sample time parameter. Enter a Sample time that is
slower than the one you set for Receive Setup.

13 From the Simulink Library Browser, select Sinks. Depending on your configuration, drag one or
more Terminator blocks to your model. To suppress unused port messages, connect this block to
the unused RCV1 port.

RS-232 Composite Drivers

From the Simulink Library Browser, select Sources. Depending on your configuration, drag the
Ground block to your model. To suppress unused port messages, connect this block to the unused
XMTS3 port.

Your model can use one block or two.

The single-block model uses the Com1/Com3 port pair:

+H
Rl w1 S5C D B xMT1 ROV f———]
NENyn -
Fulse ASCII Encode Bassbaoard srminatar
Generator REZ32]
Send Racsive
we—P{XMT3 RCV3 D D-‘Lﬁcgéle 1 p| Target Scope
Ground
ASCI Decodsa
Baseboard Scope (xPC)
Serial
The two-block model uses two sets of Custom port pairs:
Eandhand
v w1 S5C o P xMT1 ROV ———]
NENyn -
Fuls= ASCII Encode Bassbaoard srminatar
Generator REZ32
Send Raceive
Ground Terminator1
Basaboard
Serial
- PxMT2 RCVZ w0 Dﬁg{'ﬂ'e 1 p| Tormst Scops
Ground2
B{Egg;rd ASCI Decade
Send Raceive Scope (xPC)
Ground1 Terminator2
Basaboard
Sernall

14 Double-click a Baseboard RS232 Send Receive block. To configure the ports on the target
computer for this board, enter values.

Note This dialog box changes depending on the Parameter group selection.

2-5

2 Serial Communications Support

2-6

For example, if the Parameter group is Board Setup and the target computer port is
connected to COM1/COM3, your Send Receive block dialog box looks like this figure.

Block Parameters: Baseboard Serial -
Baseboard RS232 Send Receive (mask) (link)

Baseboard
RS5232 Send Receive Subsystem

Parameters
Parameter group: Board Setup =
Configuration: |Com1/Com3 -

Cancel Help Apply

For more information on entering the block parameters, see RS-232 Send/Receive.
15 C(Click OK. The Send Receive block dialog box closes.

Your next task is to build and run the real-time application.

Building and Running the Real-Time Application

The Simulink Real-Time software and Simulink Coder™ create C code from your Simulink model. You
can then use a C compiler to create executable code that runs on the target computer. This topic
assumes that you know how to configure your model to create a real-time application. See “Build and
Download Real-Time Application by Using Run on Target”.

After you have added the RS-232 blocks for the main board to your Simulink model and configured
your model, you can build your real-time application.

In the Simulink Editor, on the Real-Time tab, click Run on Target.

Simulink Real-Time RS-232 Reference

* “Using the FIFO Read Blocks” on page 2-6

+ “Signal Data Types” on page 2-7

* “Handling Zero Length Messages” on page 2-8

* “Controlling When You Send a Message” on page 2-9

The Simulink Real-Time software supports RS-232 communication with driver blocks in your Simulink
model.

Using the FIFO Read Blocks

There are three kinds of FIFO Read blocks: FIFO Read, FIFO Read HDRS, and FIFO Read Binary. To
develop your model, use the following guidelines:

RS-232 Composite Drivers

Simple data streams — Use the FIFO Read block to read simple data streams. An example of a
simple data stream is one that has numbers separated by spaces and ends with a new-line
character. The FIFO Read block is a simple block that can easily extract these numbers.

More complicated data streams — Use the FIFO Read HDRS and FIFO Read Binary blocks for
more complicated data streams. A more complicated data stream can be one that contains
headers, messages of varying lengths, or messages without specific terminators. A message
header consists of one or more character identifiers at the beginning of a message that specify
what data follows. ASCII messages normally have a variable length and a terminator. Typically, the
messages of a particular device use the same predefined terminator. Binary messages are
normally of fixed length without a specific terminator.

The FIFO Read HDRS and FIFO Read Binary blocks are also useful to work with devices that can
send different messages at different times.

The three FIFO read block types need their input to be of type serialfifoptr, which is output from
F type Send Receive subsystems.

The following are examples of when you can use the FIFO Read block.

For an instrument that sends a character vector like this:

<number> <number> ... <CR><LF>

use the simple FIFO Read block to read the message. Configure the FIFO Read block Delimiter
parameter for a line feed (value of 10). Connect the output to an ASCII Decode block with a format
that separates the numbers and feeds them to the output ports.

For an instrument that can send one of several different messages, each beginning with a different
fixed character vector, use the FIFO Read HDRS block. For example, a digital multimeter
connected through an RS-232 port sends a voltage reading and an amp reading with messages of
the following format:

volts <number> <CR><LF>
amps <number> <CR><LF>

Configure the FIFO Read HDRS block Header parameter for the volts and amps headers, in a
cell array: {'volts', 'amps'}. Also configure the Terminating string parameter for carriage
return (13) and line feed (10): [13 10].

Connect the output to multiple ASCII Decode blocks, one for each header and message. See the
xpcserialasciitest and xpcserialasciisplit models in xpcdemos for examples of how to
use this block in a model.

For an instrument that sends a binary message, you typically know the length of each full
message, including the header. Configure the FIFO Read Binary block Header parameter for the
headers of the message, in a cell array, and the Message Lengths parameter for the message
lengths. See the xpcserialbinarytest and xpcserialbinarysplit models in xpcdemos for
further examples of how to use this block in a model.

Signal Data Types

Signals between blocks in composite drivers can be one of several basic data types, 8-bit, 16-bit, and
32-bit. These types are structures.

The 8-bit data types are NULL-terminated character vectors that are represented as Simulink
vectors. The width is the maximum number of characters that can be stored. In the following figure, M

2-7

2 Serial Communications Support

2-8

is the actual set of stored characters and N is the maximum number of characters that can be stored.
This figure illustrates 8-bit int NULL-terminated and 8-bit uint NULL-terminated data types.

|_‘ i -| unused values
[t e[]ufo] [wlo[rltjo]o] ‘T/

|-|l N n-|

This character vector has 11 characters terminated with a NULL byte (0). This data type cannot
contain a NULL byte as part of the real data.

The 16-bit and 32-bit data types use the first element of the vector as a count of the valid data. In the
following figure of a 16-bit data type, C is the count of the valid data, N is the width of the vector. This
figure illustrates count + 16-bit int and count + 16-bit uint data types. It also applies to count +
32-bit int and count + 32-bit uint data types.

C
|-d—i-| unused and
undefined wvalues
BRERERRRERR
o 0 H|0O E[{O L|o L|O O
HENEEEEEEE
|-I N -

These serial blocks interpret each entry in the vector as a single character. The low-level Send block
writes the low-order byte of each entry to the UART. The 16-bit and 32-bit data types allow the
embedding of 8-bit data values, including 0. The 8-bit data type is most useful with the ASCII Encode
and Decode blocks. The 16-bit and 32-bit data types are most useful for binary data streams.

Handling Zero Length Messages

Usually, you configure a FIFO read block of your model serial I/O to execute faster than the model
receives data. Doing so prevents the receive FIFO buffer from overflowing. However, you must also
configure your model to deal with the possibility that a FIFO read block does not have a message on
its output.

Receive FIFOs can have too few characters for a FIFO read operation. A model that receives serial
I/0 can have a FIFO read block that executes in this situation. This condition causes a FIFO read
block to perform one of the following, depending on how you configure the behavior:

* Return the last message it received
* Return a zero length message

The Simulink Real-Time library of composite serial drivers has three FIFO read blocks: FIFO Read
HDRS, FIFO Read Binary, and FIFO Read. For the FIFO Read HDRS or FIFO Read Binary blocks, you
configure this behavior with the Qutput behavior parameter. The FIFO Read block returns either a
new message or a zero length message.

To execute model code only if a new message arrives, check the first element of the returned vector,
depending on the character vector data type:

RS-232 Composite Drivers

* In the 8-bit data type, the returned character vector is NULL-terminated. Therefore, if the first
element is 0, the character vector has zero length and the FIFO read did not detect a new
message.

* Inthe 16-bit and 32-bit data types, the first element is the number of characters in the character
vector. This value is 0 if the FIFO read did not detect a new message.

If the message has nonzero length, enable a subsystem to process the new character vector;
otherwise, do not process it.

Controlling When You Send a Message

You can use the structure of both serial data types (“Signal Data Types” on page 2-7) to control when
a message is sent. In both cases, a 0 in the first position indicates an empty character vector.

* 8-bit data types — A value of 0 in the first position is the NULL terminator for the character
vector.

* 16-bit and 32-bit data types — The first position is the number of characters that follow.

If you connect an empty character vector to the XMT port on one of the send/receive subsystems, no
characters are pushed onto the transmit FIFO. You can get this empty character vector by using one
of the following:

» To send a specific character vector occasionally, use the Product block to multiply the entire
character vector by either 0 or 1. In this case, the 0 or 1 value becomes a transmit enable. To
optimize this operation, use a Demux block to extract the first element. Multiply just that element
by 0 or 1, then use the Mux block to combine it again.

* Use a Manual Switch, Multiport Switch, or Switch block. Configure the blocks for two ports to
choose between different messages, with one of the choices a vector of 0 values. The Switch block
only chooses between vectors of the same width. However, because the character vector length
does not use the whole vector, you can pad your data to the same width with 0 values.

See Also

ASCII Decode | ASCII Decode V2 | ASCII Encode | FIFO Read | FIFO Read Binary | FIFO Read HDRS |
FIFO Write | Modem Control | Modem Status | RS-232 Send/Receive | RS-232 Send/Receive FIFO |
RS232 State

2-9

Serial Communications Support: Blocks

3 Serial Communications Support: Blocks

3-2

ASCII Encode

Convert Simulink values into uint8 character vector
Library: Simulink Real-Time / RS232

ASCI
Encode

L4

1 D

e

Description

Generates a uint8 output vector that contains a NULL-terminated character vector based on a
printf like format string. The data comes from the input ports.

Ports
Input

1 — Numbered ports that receive values to encode
numeric

Values that the block encodes as a null-terminated character vector.
Data Types: double | int8 | uint8 | intl6 | uintl16 | int32 | uint32

Output

D — Null-terminated character vector
character vector

Generated uint8 output vector that contains a NULL-terminated character vector.

Parameters

Format string — Format specifiers for converting values to ASCII
%d\r (default) | %C | %1 | %0 | %U | %X | %e | %T | %g

Enter a printf like format string. For each format specifier such as %d, the block replaces the
format specifier by the converted value in the corresponding input variable. The format specifiers
follow the normal description for printf.

Programmatic Use
Block Parameter: format

Number of variables — Number of block inputs
1 (default) | integer

The value on each port is inserted into the output character vector with the format specified in
Format string.

Programmatic Use
Block Parameter: nvars

ASCIl Encode

Max output string length — Maximum length of converted character vector, in bytes
128 (default) | integer

The block allocates enough memory to support this length for the output port. When specifying this
length, include the NULL termination on the character vector.

If the converted character vector exceeds this length, the block returns an error and does not write
that character vector to the output port.

Programmatic Use
Block Parameter: maxlength

Variable types — Simulink data types allowed for input ports
{'double'} (default) | {'int8'} | {'uint8'} | {'int16} | {'uintl6'} | {'int32'} |
{'uint32'}

A cell vector with the same number of elements as specified in Number of variables can specify a
different data type for each input port. A single element is replicated. For example:

nvars=3
{ } — The three inputs are doubles.
{'uint8'} — The three inputs are uints8.

{'uintl6', 'double', 'uint8'} — The first inputis a uint16, the second input is a double,
and the third input is a uint8.

Programmatic Use
Block Parameter: vartypes

See Also
ASCII Decode

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

3-3

3 Serial Communications Support: Blocks

3-4

ASCII Decode

Parse ASCII character vector into Simulink values
Library: Simulink Real-Time / RS232

ASCI
Decode

L4
)
o

Description

Parses an input character vector according to a format specifier similar to scanf and makes
converted values available to the real-time application.

Ports
Input

D — Input vector to parse
character vector

The input vector can be either 8-bit or 16-bit and signed or unsigned. If the data format is 16-bit, the
block ignores the upper 8 bits of each entry.

Data Types: int8 | uint8 | int1l6 | uint16
Output

1 — Numbered ports that send Simulink values
numeric

Output ports corresponding to items in Format string.

Dependency

Number of variables determines the number of output ports.
Data Types: double | int8 | uint8 | intl6 | uintl1l6 | int32 | uint32

Parameters

Format string — Format specifier for parsing input vector
%d\r (default) | %C | %1 | %0 | %u | %X | %€ | %T | %g

Enter a scanf like format string. Each format specifier such as %d must match a corresponding part
of the input vector. Literal strings in the format must match the first character plus the number of
characters. The format specifiers follow the normal description for scanf.

An example format string is:

'alpha %d bravo %f\n'

ASCII Decode

Programmatic Use
Block Parameter: format

Number of variables — Number of output ports for this block
1 (default) | integer

Enter the number of output ports for this block. For example,

If Format string has the value of $xmore text%x and the input vector for the block has
cdmabcdefgh90, you must specify the value of the Number of variables parameter as 2.

The first variable is assigned the value Oxcd. Next, the character vector mabcdefgh is considered a
match to more text because

» The first character for both character vectors is m.
* Both character vectors have the same number of characters.

The second variable is then assigned the value 0x90. The character vector mabcdefgh does not have
to match exactly the value of Format string. This behavior is different from the behavior for scanf,
which requires an exact match.

Programmatic Use
Block Parameter: nvars

Variable types — Simulink data types allowed for output ports
{'double'} (default) | {'int8'} | {'uint8'} | {'int16} | {'uintl6e'} | {'int32"'} |
{'uint32'}

A cell vector with the same number of elements as specified in Number of variables can specify a
different data type for each output port. A single element is replicated. For example:

nvars=3
{ } — The three outputs are doubles.
{'uint8"'} — The three outputs are uints.

{'uintl6', 'double', 'uint8'} — The first outputis a uintl6, the second output is a double,
and the third output is a uint8.

Programmatic Use
Block Parameter: varids

See Also
ASCII Encode

Topics

“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

3 Serial Communications Support: Blocks

3-6

ASCII Decode V2

Parse ASCII character vector into Simulink values
Library: Simulink Real-Time / RS232

el

} Ascii I:lecl::-n"-'il“
V2

el

Description

The ASCII Decode block parses an input vector produced by one of the following:

+ Serial port Receive block

* Serial port FIFO Read block

» ASCII Encode block

It makes the converted values available to a real-time application. It assumes that the input vector
was prepared using an output format specifier similar to printf and uses an input format specifier
similar to scanf.

This block generates inline code for the target computer. You cannot use it for Simulink simulation.

Ports
Input

Data — Input vector to parse
character vector

The input vector can be either 8-bit or 16-bit and signed or unsigned. If the data format is 16-bit, the
block ignores the upper 8 bits of each entry.

Data Types: int8 | uint8 | int1l6 | uintl6
Output

cnt — Number of format specifiers satisfied by input
integer

cnt receives the number of format specifiers satisfied by the input character vector.

Value — Inlined ports that send Simulink values
numeric

Output ports corresponding to items in Format.

This block generates inline code for the target computer. You cannot use it for Simulink simulation.
Data Types: single | double | int8 | uint8 | uintl6 | intl6 | int32 | uint32

ASCII Decode V2

Parameters

Format — Format specifier for parsing input vector
"%T\n"' (default) | %C | %d | %1 | %0 | %U | %X | %€ | %g

Enter a scanf like format string. Each format specifier such as %d must match a corresponding part
of the input vector. Literal strings in the format must match the characters in the input vector. The
format specifiers follow the normal description for scanf. They must be enclosed in single quotes.
Failure to include these quotes causes simulation failures.

An example format string is:
'alpha %d bravo %f\n'

In this example, assume that the data from the FIFO read is 'alpha 5'. In this case, cntis 1 and
the second output is unchanged from the last time both were found in a character vector. If the model
expects 2 values, and cnt is less than 2, the model detects an error in the data.

Programmatic Use
Block Parameter: format

See Also
Topics

“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

3 Serial Communications Support: Blocks

3-8

FIFO Read

Read simple data streams

Library: Simulink Real-Time / RS232

FIFO
Read

LY.
ul
]
ol

Description

The FIFO Read block is the read side of a FIFO read/write pair. It is used to parse simple data
streams. The block functions in two modes, set using the Read to delimiter check box.

If you select the Read to delimiter check box, the block only reads elements if the specified
delimiter has been written to the FIFO Write block. If the delimiter is found, the block returns
elements up to and including the delimiter in the output vector. If the delimiter is not found, the
block returns a zero length vector, as determined by the data type. (If you have a zero length
vector, you can have your model perform a particular operation, or ignore the case.)

If you clear the Read to delimiter check box, the block returns elements between Minimum
read size and the smaller of the number of elements currently in the FIFO and Maximum read
size.

You usually select the Read to delimiter check box when performing ASCII reads and clear it
when performing binary reads.

The following are some examples of how you can set up the FIFO Read block:

Transmit side of the interrupt service routine — If the interrupt reason is not an empty
hardware FIFO on the UART, the maximum input port receives a value of 0. If the hardware FIFO
is empty, it receives the size of the hardware FIFO. The minimum input port receives the constant
value of 1.

Receive side of the interrupt service routine — The typical case with ASCII data has the
minimum and maximum input ports disabled. The Read to delimiter parameter check box is
selected and the Delimiter parameter has the value of carriage return or line feed. The value of
the Maximum read size parameter is large (along the order of the FIFO size) and the value of
Minimum read size parameter is 1. In this form, the driver acts like a nonblocking read line.

An alternate receive-side configuration for fixed-length binary blocks of data has the value of the
Maximum read size and Minimum read size parameters set to the fixed length of the block.
The Read to delimiter parameter is not selected.

For complex data streams, consider using the FIFO Read HDRS and FIFO Read Binary blocks. For
guidelines on when to use these blocks, see “Using the FIFO Read Blocks” on page 2-6.

Ports

Input

F — FIFO from which to read data
serialfifoptr

FIFO Read

Connects to the software FIFO containing data read from the serial port.

MAX — Maximum number of bytes to read from FIFO
integer

The maximum number of bytes to return from the block.
Dependency

To cause this port to become visible, set parameter Max and Min read size ports.

MIN — Minimum number of bytes to read from FIFO
integer

The minimum number of bytes to return from the block.

Dependency

To cause this port to become visible, set parameter Max and Min read size ports.
Output

D — Parsed data read from FIFO
vector

Vector containing the parsed data read from the FIFO.
Dependency
To determine the data type of this vector, set the parameter Output vector type.

Data Types: int8 | uint8 | intl6 | uintl6 | int32 | uint32

ENA — Pass value of MAX through
integer

Passes the value of port MAX through to the block that reads the ENA port.
Dependency
To cause this port to become visible, set parameters Max and Min read size ports and Enable

passthrough.

Parameters

Maximum read size — Maximum number of characters returned by block
1024 (default) | integer

Specify the maximum number of characters for this block to return. The resulting vector size is one
more than this maximum number of characters. This block indicates the number of characters being
returned using the extra element as:

* A null terminator for the 8-bit data types
* The character count for the 16-bit and 32-bit data types

Enter a large enough number. If this number is too small, the block cannot return anything. For
example, if you enter the value 10, but on execution the FIFO contains 11 characters plus the null

3-9

3 Serial Communications Support: Blocks

3-10

terminator, the block does not return any characters. On the other hand, if it contains 5, the block
returns 5 characters plus the null terminator.

If you select the parameter Max and Min read size ports, the block interprets the value input on
port MAX as the maximum number of characters to return. The actual maximum number of characters
to return is the smaller of the value on port MAX and the maximum read size in the block parameters.
Use this value in binary mode when the Read to delimiter check box is not selected.

Programmatic Use
Block Parameter: maxsize

Minimum read size — Minimum number of characters returned by block
1 (default) | integer

Enter the smallest desired read size in bytes. The FIFO must contain at least this number of elements
before elements are returned.

If you select the parameter Max and Min read size ports, the value of port MIN supersedes this
value.

Programmatic Use
Block Parameter: minsize

Read to delimiter — Return delimited element sets
on (default) | of f

Select this check box to enable the return of element sets that terminate with the Delimiter value.
Use this parameter when working with character-based elements.

Programmatic Use
Block Parameter: usedelimiter

Delimiter — Terminator value for delimited element sets
13 (default) | uint

Enter the decimal value for an 8-bit input terminator. This parameter specifies the value on which a
FIFO read operation terminates. It works with the Read to delimiter parameter. By default, this
block looks for a carriage return. It only returns characters when one is found. For reference, the
decimal value of a carriage return is 13, a line feed is 10.

Programmatic Use
Block Parameter: delimiter

Output vector type — Specify output data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit uint | count
+16 bit int | count+16 bit uint |8 bit int null terminated

The 8-bit data types produce a null terminated character vector in the output vector. For 16-bit and
32-bit data types, the first element contains the number of elements to expect in the rest of the
output vector.

Programmatic Use
Block Parameter: outputtype

Max and Min read size ports — Enable maximum and minimum input ports
off (default) | on

FIFO Read

When this check box is selected:

* The value from input port MAX is the maximum number of characters to be removed from the
FIFO. If this number exceeds the value of Maximum read size, the block disregards the value
from the maximum input port. It takes the value of Maximum read size as the maximum number
of characters to be removed from the FIFO.

* The value from the input port MIN is the minimum number of characters the FIFO must contain
before elements can be returned. This value supersedes the value set with the Minimum read
size parameter.

Causes input ports MAX and MIN to become visible.

Programmatic Use
Block Parameter: enable

Enable passthrough — Enable passthrough of MAX value
off (default) | on

Select this check box to pass the value of input port MAX through to output port ENA.

Dependency

Causes output port ENA to become visible.

Programmatic Use
Block Parameter: enableout

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sampletime

See Also
FIFO Write

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

3-11

3 Serial Communications Support: Blocks

3-12

FIFO Write

Write simple data streams
Library: Simulink Real-Time / RS232

FIFO
write

L4
[
Rl
o

Description

The FIFO Write block is the write side of a FIFO read/write pair. It is used to generate simple data
streams.

Ports
Input

D — Data to write to FIFO
vector

Vector containing the data to write to the FIFO.
Dependency

To determine the data type of this vector, set the parameter Input vector type.
Data Types: int8 | uint8 | int16 | uintl1l6 | int32 | uint32

Output

F — FIFO vector
serialfifoptr

Connects to the FIFO that writes data to the serial port.

DP — True if new data is present in the FIFO
true | false

If data is present in the FIFO, returns true.

Dependency
To cause this port to become visible, set parameters Max and Min read size ports and Enable
passthrough.

Parameters

Size — Size of FIFO, in bytes
1024 (default) | integer

Enter the number of elements that can be held in the FIFO at one time. If a write operation to the
FIFO causes the number of elements to exceed Size, an error occurs.

FIFO Write

Programmatic Use
Block Parameter: size

Input vector type — Specify input data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit uint| count
+16 bit int | count+16 bit uint |8 bit int null terminated

For the 16-bit and 32-bit data types, include as first element the number of elements to expect in the
rest of the input vector. The count controls how many bytes that the block copies into the FIFO. The
block does not copy the count itself into the FIFO.

For the 8-bit data types, provide a null terminated character vector in the output vector. The block
copies data into the FIFO up to, but not including, the null terminator.

For more information, see “RS-232 Composite Drivers” on page 2-3.

Programmatic Use
Block Parameter: inputtype

Data present output — Enables output DP
off (default) | on

Select this check box to create the Boolean output DP. If data is present in the FIFO, DP becomes
true. The transmit side of the send/receive subsystem uses this output. This output is given to the
Enable TX block, which enables the transmitter buffer empty interrupt.

Causes output port DP to become visible.

Programmatic Use
Block Parameter: present

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sampletime

ID — Identifier for overflow messages
character vector

Enter a user-defined identifier for FIFO overflow messages.

Programmatic Use
Block Parameter: id

See Also
FIFO Read

Topics

“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

3-13

3 Serial Communications Support: Blocks

Introduced in R2008a

3-14

FIFO Read HDRS

FIFO Read HDRS

Read multiple ASCII data streams according to header information
Library: Simulink Real-Time / RS232

.m0 1P
Read HDRS ,

b V.4

el

Description

The FIFO Read HDRS block identifies and separates ASCII data streams that have embedded
identifiers.

The data following a particular header can have varying lengths, but has a common termination
marker such as <CR><LF>. Although you can attain this same functionality with the FIFO Read block,
doing so requires a complicated state machine with the following behavior:

o If the same header arrives in the FIFO more than once after the block was last executed, the block
returns the latest instance of the header. In this way, the block catches up with data that arrives
faster than the block executes.

o If a header arrives in the FIFO that does not match an item in the headers list, the block discards
the message.

» If bytes arrive in the FIFO that do not match a header, the block interprets the message as having
an unspecified header. The block skips these bytes.

The xpcdemos folder contains the following examples that illustrate how to use the FIFO Read HDRS
block: xpcserialasciitest and xpcserialasciisplit.

Ports
Input

F — FIFO from which to read data
serialfifoptr

Connects to the software FIFO containing data read from the serial port.

E — Enable read from FIFO
true | false

If true, read from FIFO.
Dependency

To cause this port to become visible, set parameter Enable input.
Output

1 — Numbered output streams, one per header
vector

3-15

3 Serial Communications Support: Blocks

3-16

Vectors containing the parsed data read from the FIFO. Each output corresponds to one of the
headers.

Dependency

To determine the data type of this vector, set the parameter Output vector type.
Data Types: int8 | uint8 | intl6 | uintl6 | int32 | uint32

Parameters

Header — Search targets in ASCIl data stream
cell array of character vector

Enter the headers that you want the block to look for in a block of data from the FIFO. Enter each
header in single quotes as an element in a cell array.

Programmatic Use
Block Parameter: hdr

Terminating string — Characters that end data stream
[13 10] (default) | [integer]

Enter the terminating character vector for the data. Enter the characters defining the end of
character vector, typically one or two characters.

Programmatic Use
Block Parameter: nterm

Output behavior — Behavior when no new data
Zero output if no new data (default) | Hold last output if no new data

From the list, select the behavior of the block if the FIFO has not received new data:

* Hold last output if no new data — Block keeps the output from the last FIFO message.
* Zero output if no new data — Block overwrites the first element of the output with 0.

Programmatic Use
Block Parameter: hold

Enable input — Enable read from FIFO
off (default) | on

To create an input port that enables or disables the read operation, select this check box. The input
port takes a Boolean signal.

Dependency

Causes input port E to become visible.

Programmatic Use
Block Parameter: enable

Maximum read size — Maximum number of characters returned by block
1024 (default) | integer

FIFO Read HDRS

Specify the maximum number of characters for this block to return. The resulting vector size is one
more than this maximum number of characters. This block indicates the number of characters being
returned using the extra element as:

* A null terminator for the 8-bit data types
» The character count for the 16-bit and 32-bit data types

Enter a large enough number. If this number is too small, the block cannot return anything. For
example, if you enter the value 10, but on execution the FIFO contains 11 characters plus the null
terminator, the block does not return any characters. On the other hand, if it contains 5, the block
returns 5 characters plus the null terminator.

Programmatic Use
Block Parameter: maxsize

Output vector type — Specify output data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit uint | count
+16 bit int | count+16 bit uint |8 bit int null terminated

The 8-bit data types produce a null terminated character vector in the output vector. For 16-bit and
32-bit data types, the first element contains the number of elements to expect in the rest of the
output vector.

Programmatic Use
Block Parameter: outputtype

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sampletime

See Also
FIFO Read | FIFO Read Binary | FIFO Write

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

3-17

3 Serial Communications Support: Blocks

3-18

FIFO Read Binary

Read multiple binary data streams according to header information
Library: Simulink Real-Time / RS232

1p
¢ FIFO

Read BINARY

b4

2

s

Description
The FIFO Read Binary block reads multiple binary headers from a FIFO.

This block identifies and separates data by finding unique byte sequences (headers) that mark the
data. Each header indicates the start of a fixed-length binary message. If the same header arrived in
the FIFO more than once since the block was last executed, the block discards the older data. It then
returns the latest instance of the header. In this way, the block catches up with data that arrives
faster than the block executes.

The xpcdemos folder contains the following examples that illustrate how to use the FIFO Read HDRS
block: xpcserialbinarytest and xpcserialbinarysplit.

Ports
Input

F — FIFO from which to read data
serialfifoptr

Connects to the software FIFO containing data read from the serial port.

E — Enable read from FIFO
true | false

If true, read from FIFO.

Dependency
To cause this port to become visible, set parameter Enable input.
Output

1 — Numbered output streams, one per header
vector

Vectors containing the parsed data read from the FIFO. Each output corresponds to one of the
headers.

Dependency

To determine the data type of this vector, set the parameter Output vector type.
Data Types: int8 | uint8 | intl6 | uintl1l6 | int32 | uint32

FIFO Read Binary

Parameters

Header — Search targets in binary data stream
cell array of binary data

Enter the headers that you want the block to look for in a block of data from the FIFO. Enter each
header as an element in a cell array either as a quoted character vector or a concatenation with
char(val) for non-printable byte patterns.

Programmatic Use
Block Parameter: hdr

Message Lengths — Message lengths, in bytes
1024 (default) | integer

Enter the message length, in bytes. Include the header in the length.

Programmatic Use
Block Parameter: lengths

Output behavior — Behavior when no new data
Zero output if no new data (default) | Hold last output if no new data

From the list, select the behavior of the block if the FIFO has not received new data:

* Hold last output if no new data — Block keeps the output from the last FIFO message.
* Zero output if no new data — Block overwrites the first element of the output with 0.

Programmatic Use
Block Parameter: hold

Enable input — Enable read from FIFO
off (default) | on

To create an input port that enables or disables the read operation, select this check box. The input
port takes a Boolean signal.

Dependency

Causes input port E to become visible.

Programmatic Use
Block Parameter: enable

Maximum read size — Maximum number of characters returned by block
1024 (default) | integer

Specify the maximum number of characters for this block to return. The resulting vector size is one
more than this maximum number of characters. This block indicates the number of characters being
returned using the extra element as:

* A null terminator for the 8-bit data types
* The character count for the 16-bit and 32-bit data types

Enter a large enough number. If this number is too small, the block cannot return anything. For
example, if you enter the value 10, but on execution the FIFO contains 11 characters plus the null

3-19

3 Serial Communications Support: Blocks

3-20

terminator, the block does not return any characters. On the other hand, if it contains 5, the block
returns 5 characters plus the null terminator.

Programmatic Use
Block Parameter: maxsize

Output vector type — Specify output data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit uint| count
+16 bit int | count+16 bit uint |8 bit int null terminated

The 8-bit data types produce a null terminated character vector in the output vector. For 16-bit and
32-bit data types, the first element contains the number of elements to expect in the rest of the
output vector.

Programmatic Use
Block Parameter: outputtype

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sampletime

See Also
Topics

“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

Modem Control

Modem Control

Control state of RTS and DTR output lines on serial port
Library: Simulink Real-Time / RS232 / Mainboard

) RTS Baszeboard
RModem Control

L¥.4
=]

Description

The Modem Control block controls the state of either or both of the RTS and DTR output lines on the
serial port. To choose which output lines to control, select the RTS and DTR parameters.

Ports
Input

RTS — Level-sensitive signal for setting ready-to-send line
double

The behavior of the block is:

* RTS > 0.5 — The block asserts the RTS control bit to true. The output goes to a positive
voltage.

* RTS = 0.5 — The block asserts the RTS control bit to false. The output goes to a negative
voltage.

Dependency
If the RTS parameter is of f, this input has no effect.

DTR — Level-sensitive signal for setting data-terminal-ready line
double

The behavior of the block is:

* DTR > 0.5 — The block asserts the DTR control bit to true. The output goes to a positive
voltage.

* DTR = 0.5 — The block asserts the DTR control bit to false. The output goes to a negative
voltage.

Dependency

If the DTR parameter is of f, this input has no effect.

Parameters

RTS — Enable control of RTS line for serial device
on (default) | of f

Select this check box to control the RTS line for this board.

3-21

3 Serial Communications Support: Blocks

3-22

Programmatic Use
Block Parameter: rts

DTR — Enable control of DTR line for serial device
on (default) | of f

Select this check box to control the DTR line for this port.

Programmatic Use
Block Parameter: dtr

Configuration — Specify port of modem control line
COM1 (default) | COM2 | COM3 | COM4 | Custom

From the list, select a port to access:

COM1 — 0x3F8
COM2 — 0x2F8
COM3 — 0x3ES8
COM4 — 0x2E8

Custom — A port that is set to an address other than the addresses for COM1, COM2, COM3, or
com4.

The value Custom causes the Base address parameter to become visible.

Programmatic Use
Block Parameter: boardtype

Base address — Base address for serial port
0x3f8 (default) | integer

Use this base address to specify a Custom serial port.

The value Custom causes the Base address parameter to become visible.

Programmatic Use
Block Parameter: addr

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

Modem Status

Modem Status

Return state of modem control lines
Library: Simulink Real-Time / RS232 / Mainboard

CTS
Baseboard DSR
Modem Status Rl
DCoD

A

Description

The Modem Status block reads the state of the four input modem control lines.

This block has outputs of type Boolean. If the input voltage is positive, the output is true. If the input
voltage is negative, the output is false.

Ports

Output

CTS — Status of clear to send line
true | false

If true, the modem is ready to receive data.

Dependency
To make this output visible, select the CTS parameter.

DSR — Status of data set ready line
true | false

If true, the modem is ready to send and receive data.

Dependency
To make this output visible, select the DSR parameter.

RI — Status of ring indicator line
true | false

If true, the modem has received an incoming ring signal.

Dependency
To make this output visible, select the RI parameter.

DCD — Status of data carrier detect line
true | false

If true, the modem is receiving a carrier from a remote device.

Dependency

To make this output visible, select the DCD parameter.

3-23

3 Serial Communications Support: Blocks

Parameters

CTS — Enables clear to send status output
on (default) | of f

Select this check box to monitor the CTS line of the modem.

Selecting this parameter makes the CTS port visible.

Programmatic Use
Block Parameter: cts

DSR — Enables data set ready status output
on (default) | of f

Select this check box to monitor the DSR line of the modem.

Selecting this parameter makes the DSR port visible.

Programmatic Use
Block Parameter: dsr

RI — Enables ring indicator status output
on (default) | of f

Select this check box to monitor the RI line of the modem.

Selecting this parameter makes the RI port visible.

Programmatic Use
Block Parameter: ring

DCD — Enables data carrier detect status output
on (default) | of f

Select this check box to monitor the DCD line of the modem.

Selecting this parameter makes the DCD port visible.

Programmatic Use
Block Parameter: dcd

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sampletime

Configuration — Specify port of modem control line
COM1 (default) | COM2 | COM3 | COM4 | Custom

From the list, select a port to access:

+ COM1 — 0x3F8

3-24

Modem Status

+ COM2 — 0x2F8
+ COM3 — Ox3ES8
+ COM4 — 0x2E8

* Custom — A port that is set to an address other than the addresses for COM1, COM2, COM3, or
com4,

The value Custom causes the Base address parameter to become visible.

Programmatic Use
Block Parameter: boardtype

Base address — Base address for serial port
0x3f8 (default) | integer

Use this base address to specify a Custom serial port.

The value Custom causes the Base address parameter to become visible.

Programmatic Use
Block Parameter: addr

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

3-25

3 Serial Communications Support: Blocks

RS-232 Send/Receive

Send and receive data over Mainboard Baseboard serial port

Library: Simulink Real-Time / RS232 / Mainboard
HEMT1 ROV P
Baseboard
RS232
Send Racaive
) b
Description

The Send/Receive block sets up the serial interface to send and receive basic character streams. This
block has basic FIFO Read blocks inside the subsystem. It generates output as an array of packed
integers (settable at 8 bits, 16 bits, or 32 bits). Characters appear in the lower byte and received
status information appears in the upper byte.

Only one Send/Receive can exist for each COM interrupt. All ports that use that interrupt must be
associated with that block. For example, if the main board is configured with four ports, COM1 and
COMa3 typically share an interrupt. In this case, COM1 and COM3 must then share a Send/Receive
block.

Ports
Input

XMT1 — Vector 1 of data to transmit
[int8] | [uint8] | [int16] | [uintl6] | [int32] | [uint32]

Vector of data to transmit over port 1.

XMT2 — Vector 2 of data to transmit over serial port
[int8] | [uint8] | [int16] | [uintl6] | [int32] | [uint32]

Vector of data to transmit over port 2.
Output

RCV1 — Vector 1 of data that has been received over serial port
[int8] | [uint8] | [int16] | [uintl6] | [int32] | [uint32]

Vector containing data that has been received from serial port 1.

RCV2 — Vector 2 of data that has been received over serial port
[int8] | [uint8] | [int16] | [uint16] | [int32] | [uint32]

Vector containing data that has been received from serial port 2.

3-26

RS-232 Send/Receive

Parameters

Parameter group — Select groups of parameters
Board Setup (default) | Basic Setup | Transmit Setup | Receive Setup

To configure a group of parameters, select a group.

Programmatic Use
Block Parameter: group

Board Setup

Configuration — Specify ports for transmitting and receiving
Coml/none (default) | Com2/none | Com1l/Com3 | Com2/Com4 | none/Com3 | none/Com4 | Custom

This parameter specifies the ports for which you are defining transmit and receive. For example,
Coml/Com3 specifies that port 1 uses COM1 and port 2 uses COM3. On the Simulink block, the upper
port is port 1 and the lower port is port 2.

A Custom configuration is one that does not match the existing combinations of port pairs. For
example, assume that your target computer BIOS disables port 1 and reconfigures port 2 to use base
address 0x220, IRQ 11. Then you can make the following settings:

* Configuration — Custom

* IRQ number — 11

» First port address — 0

* Second port address — 0x220

In this case, port 1 is unused.

The value Custom makes the IRQ number, First port address, and Second port address
parameters visible.

Programmatic Use
Block Parameter: config

IRQ number — Base address for serial port 2
4 (default) | integer

Use this IRQ to specify a Custom serial port configuration.

The value Custom causes the IRQ number parameter to become visible.

Programmatic Use
Block Parameter: irgnum

First base address — Base address for serial port 1
0x3f8 (default) | integer

Use this base address to specify a Custom serial port configuration.

The value Custom causes the First base address parameter to become visible.

Programmatic Use
Block Parameter: saddrl

3-27

3 Serial Communications Support: Blocks

3-28

Second base address — Base address for serial port 2
0x3f8 (default) | integer

Use this base address to specify a Custom serial port configuration.

The value Custom causes the Second base address parameter to become visible.

Programmatic Use
Block Parameter: saddr2

Basic Setup

Port to modify — Specify port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On the Simulink
block, the upper port is port 1 and the lower port is port 2.

Programmatic Use
Block Parameter: port

Baud rate — Baud for transferring data
115200 (default) | 57600 | 38400 | 19200 | 9600 | 4800 | 2400 | 1200 | 600 | 300 | 110

Select a baud for transmitting and receiving data through the modem.

Programmatic Use
Block Parameter: baudl, baud2

Parity — Parity for checking data transfer
None (default) | Even | 0dd | Mark | Space

Select a parity for checking data integrity.

Programmatic Use
Block Parameter: parityl,parity2

Data bits — Number of bits per character
8 (default) | 7|6 |5

Select the number of bits that encode a character.

Programmatic Use
Block Parameter: ndatal, ndata2

Stop bits — Number of stop bits for port
1 (default) | 2

Select the number of stop bits for the character stream.

Programmatic Use
Block Parameter: nstopl,nstop2

Hardware FIFO size — Specify FIFO depth of UART
16 deep (default) | 64 deep |1 deep

Depth of hardware FIFQ, in characters. The capability of the UART limits the depth of the FIFO.

RS-232 Send/Receive

Programmatic Use
Block Parameter: fifomodel, fifomode2

Receive FIFO0 interrupt level — Number of characters in hardware FIFO before
interrupt
half full (default) | 1| quarter full|almost full

This parameter specifies the number of characters in the receive hardware FIFO before an interrupt
occurs.

Receive interrupts occur at least as often as this parameter specifies. Each interrupt calls the
interrupt service routine, causing overhead. Interrupt level 1 produces much higher overhead than
the other settings. Consider interrupt level 1 only for applications that have low latency.

If both of the following are true, the UART requests an interrupt for the receiver regardless of the
value of Receive FIFO interrupt level:

* The FIFO contains at least 1 character.

* A gap of at least 4 character times (the time required to transfer four characters) occurs in a data
stream.

Programmatic Use
Block Parameter: rlevell, rlevel?2

Auto RTS/CTS — Enable RTS/CTS handshake
off (default) | on

To enable the RTS/CTS handshake of the UART for flow control, select this check box. Serial
controllers use the RTS/CTS handshake to prevent data loss due to hardware FIFO overflow on the
device that you are sending to.

Usually, the interrupt service routine executes quickly enough to empty the FIFO. However, if your
model gets FIFO overruns, select this check box.

Programmatic Use
Block Parameter: automodel, automode?

Transmit Setup

Port to modify — Specify port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On the Simulink
block, the upper port is port 1 and the lower port is port 2.

Programmatic Use
Block Parameter: port

Transmit software FIFO size — Transmitter FIFO size, in bytes
1024 (default) | integer

Enter the transmit software FIFO size, in bytes. This parameter specifies the size of the software
FIFO that the block uses to buffer transmitted characters.

Programmatic Use
Block Parameter: xmtfifosizel,xmtfifosize2

3-29

3 Serial Communications Support: Blocks

3-30

Transmit FIFO data type — Data type of transmitter
8 bit uint null terminated (default) | count+32 bit int | count+32 bit uint | count
+16 bit int | count+16 bit uint |8 bit int null terminated

This parameter specifies the data type of the transmitter. The 8-bit data types require a NULL-
terminated character vector in the input vector.

The 16-bit and 32-bit data types reserve the first full element to contain the number of elements to
expect in the rest of the input vector. Only the low-order byte of each data element is sent. Setting
this data type allows a wider data type to hold the bytes.

If the data stream requires a NULL byte, select one of the 16-bit or 32-bit data types. Because the 8-
bit data types are NULL terminated character vectors, the NULL byte would terminate the character
vector.

Programmatic Use
Block Parameter: xmtdatatypel, xmtdatatype2

Receive Setup

Port to modify — Specify port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On the Simulink
block, the upper port is port 1 and the lower port is port 2.

Programmatic Use
Block Parameter: port

Receive software FIFO size — Receiver FIFO size, in bytes
integer

Enter the receive software FIFO size, in bytes. This parameter specifies the size of the software FIFO
that the block uses to buffer characters between interrupt service and periodic execution.

Programmatic Use
Block Parameter: rcvfifosizel, rcvfifosize?2

Receive maximum read — Maximum number of elements for block to return
1024 (default) | integer

Enter the maximum number of elements that you want returned by a single call to this block. The
block uses this parameter to set the output vector width.

If the Read to delimiter check box is selected and if the block does not find the delimiter before it
reads Receive maximum read characters, the output vector is empty.

Programmatic Use
Block Parameter: rcvmaxreadl, rcvmaxread?2

Receive minimum read — Minimum number of elements for block to return
1 (default) | integer

Enter the minimum number of characters to read. If the FIFO does not contain at least this number of
characters, the output vector is empty.

RS-232 Send/Receive

Programmatic Use
Block Parameter: rcvminreadl, rcvminread?

Read to delimiter — Return characters including message delimiter
on (default) | of f

Select this check box to have this block return all characters in the FIFO, up to and including the
specified delimiter.

If the buffer has errors, such as framing errors, the modem returns characters regardless of the
presence of the delimiter. This special case helps diagnose errors such as mismatched baud rates.

If the block does not find the delimiter before it reads Receive maximum read characters, the
output vector is empty.

Programmatic Use
Block Parameter: rcvusedeliml, rcvusedelim?2

Delimiter — Numeric value of message delimiter
13 (default) | integer

Enter the numeric value of the character that is the message delimiter. Any value from 0 to 255 is
valid. The common case looks for 10 (line feed) or 13 (carriage return).

Programmatic Use
Block Parameter: rcvdeliml, rcvdelim2

Receive FIFO data type — Data type of receiver
count+16 bit uint (default) | 8 bit uint null terminated | count+32 bit int | count
+32 bit uint | count+16 bit int |8 bit int null terminated

This parameter specifies the data type of the receiver. The 8-bit data types produce a NULL-
terminated character vector in the output vector.

For 16-bit and 32-bit data types, the first element contains the number of valid elements in the rest of
the output vector.

For 8-bit data types, only the character data is in the output vector, and a NULL terminator is
appended. The 16-bit or 32-bit wide data types cause the error status from the UART to be placed in
the second byte of each data element. (The error status contains the parity, overrun, framing, and
break bits.) The character data is in the bottom 8 bits of each element; the first element of the vector
contains the number of data elements that follow.

Programmatic Use
Block Parameter: rcvdatatypel, rcvdatatype2

Receive Sample Time — Sample time of receiver
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: rcvsampletimel, rcvsampletime2

3-31

3 Serial Communications Support: Blocks

3-32

See Also
RS-232 Send/Receive FIFO

Topics

“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

RS-232 Send/Receive FIFO

RS-232 Send/Receive FIFO

Send and receive data over Mainboard Baseboard serial port with FIFO

Library: Simulink Real-Time / RS232 / Mainboard
NxMT1 FIFD P
Basaboard
RS232
Send Raceive
FIFO OUT
2 b
Description

The Send/Receive FIFO block sets up the serial interface to send and receive character and binary
streams. It transmits input data as does the Send/Receive block, but it propagates received data
through FIFO outputs.

A model that contains a Send/Receive FIFO block with the FIFO Read block provides the same
capability as the Send/Receive block. A model that contains a Send/Receive FIFO block with a FIFO
Read HDRS or FIFO Read Binary block provides greater capability than the Send/Receive block.
Only one Send/Receive can exist for each COM interrupt. All ports that use that interrupt must be
associated with that block. For example, if the main board is configured with four ports, COM1 and

COMa3 typically share an interrupt. In this case, COM1 and COM3 must then share a Send/Receive
block.

Ports
Input

XMT1 — Vector 1 of data to transmit
[int8] | [uint8] | [1nt16] | [uint1l6] | [1nt32] | [uint32]

Vector of data to transmit over port 1.

XMT2 — Vector 2 of data to transmit over serial port
[int8] | [uint8] | [int16] | [uintl6] | [int32] | [uint32]

Vector of data to transmit over port 2.
Output

FIFO1l — FIFO 1 of data that has been received over serial port
serialfifoptr

FIFO containing data that has been received from serial port 1.

3-33

3 Serial Communications Support: Blocks

3-34

FIF02 — FIFO 2 of data that has been received over serial port
serialfifoptr

FIFO containing data that has been received from serial port 2.

Parameters

Parameter group — Select groups of parameters
Board Setup (default) | Basic Setup | FIFO Setup

To configure a group of parameters, select a group.

Programmatic Use
Block Parameter: group

Board Setup

Configuration — Specify ports for transmitting and receiving
Coml/none (default) | Com2/none | Com1l/Com3 | Com2/Com4 | none/Com3 | none/Com4 | Custom

This parameter specifies the ports for which you are defining transmit and receive. For example,
Com1l/Com3 specifies that port 1 uses COM1 and port 2 uses COM3. On the Simulink block, the upper
port is port 1 and the lower port is port 2.

A Custom configuration is one that does not match the existing combinations of port pairs. For
example, assume that your target computer BIOS disables port 1 and reconfigures port 2 to use base
address 0x220, IRQ 11. Then you can make the following settings:

* Configuration — Custom

* JRQ number — 11

» First port address — 0

* Second port address — 0x220

In this case, port 1 is unused.

The value Custom makes the IRQ number, First port address, and Second port address
parameters visible.

Programmatic Use
Block Parameter: config

IRQ number — Base address for serial port 2
4 (default) | integer

Use this IRQ to specify a Custom serial port configuration.

The value Custom causes the IRQ number parameter to become visible.

Programmatic Use
Block Parameter: irgnum

First base address — Base address for serial port 1
0x3f8 (default) | integer

Use this base address to specify a Custom serial port configuration.

RS-232 Send/Receive FIFO

The value Custom causes the First base address parameter to become visible.

Programmatic Use
Block Parameter: saddrl

Second base address — Base address for serial port 2
0x3f8 (default) | integer

Use this base address to specify a Custom serial port configuration.

The value Custom causes the Second base address parameter to become visible.

Programmatic Use
Block Parameter: saddr2

Basic Setup

Port to modify — Specify port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On the Simulink
block, the upper port is port 1 and the lower port is port 2.

Programmatic Use
Block Parameter: port

Baud rate — Baud for transferring data
115200 (default) | 57600 | 38400 | 19200 | 9600 | 4800 | 2400 | 1200 | 600 | 300 | 110

Select a baud for transmitting and receiving data through the modem.

Programmatic Use
Block Parameter: baudl, baud2

Parity — Parity for checking data transfer
None (default) | Even | 0dd | Mark | Space

Select a parity for checking data integrity.

Programmatic Use
Block Parameter: parityl, parity?2

Data bits — Number of bits per character
8 (default) | 7|6 |5

Select the number of bits that encode a character.

Programmatic Use
Block Parameter: ndatal,ndata2

Stop bits — Number of stop bits for port
1 (default) | 2

Select the number of stop bits for the character stream.

Programmatic Use
Block Parameter: nstopl,nstop2

3-35

3 Serial Communications Support: Blocks

3-36

Hardware FIFO0 size — Specify FIFO depth of UART
16 deep (default) | 64 deep |1 deep

Depth of hardware FIFO, in characters. The capability of the UART limits the depth of the FIFO.

Programmatic Use
Block Parameter: fifomodel, fifomode2

Receive FIFO0 interrupt level — Number of characters in hardware FIFO before
interrupt
half full (default) | 1| quarter full |almost full

This parameter specifies the number of characters in the receive hardware FIFO before an interrupt
occurs.

Receive interrupts occur at least as often as this parameter specifies. Each interrupt calls the
interrupt service routine, causing overhead. Interrupt level 1 produces much higher overhead than
the other settings. Consider interrupt level 1 only for applications that have low latency.

If both of the following are true, the UART requests an interrupt for the receiver regardless of the

value of Receive FIFO interrupt level:

* The FIFO contains at least 1 character.

* A gap of at least 4 character times (the time required to transfer four characters) occurs in a data
stream.

Programmatic Use
Block Parameter: rlevell, rlevel2

Auto RTS/CTS — Enable RTS/CTS handshake
off (default) | on

To enable the RTS/CTS handshake of the UART for flow control, select this check box. Serial
controllers use the RTS/CTS handshake to prevent data loss due to hardware FIFO overflow on the
device that you are sending to.

Usually, the interrupt service routine executes quickly enough to empty the FIFO. However, if your
model gets FIFO overruns, select this check box.

Programmatic Use
Block Parameter: automodel, automode?

FIFO Setup

Port to modify — Specify port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On the Simulink
block, the upper port is port 1 and the lower port is port 2.

Programmatic Use
Block Parameter: port

Transmit software FIFO size — Transmitter FIFO size, in bytes
1024 (default) | integer

RS-232 Send/Receive FIFO

Enter the transmit software FIFO size, in bytes. This parameter specifies the size of the software
FIFO that the block uses to buffer transmitted characters.

Programmatic Use
Block Parameter: xmtfifosizel,xmtfifosize2

Transmit FIFO data type — Data type of transmitter
8 bit uint null terminated (default) | count+32 bit int | count+32 bit uint | count
+16 bit int | count+16 bit uint |8 bit int null terminated

This parameter specifies the data type of the transmitter. The 8-bit data types require a NULL-
terminated character vector in the input vector.

The 16-bit and 32-bit data types reserve the first full element to contain the number of elements to
expect in the rest of the input vector. Only the low-order byte of each data element is sent. Setting
this data type allows a wider data type to hold the bytes.

If the data stream requires a NULL byte, select one of the 16-bit or 32-bit data types. Because the 8-
bit data types are NULL terminated character vectors, the NULL byte would terminate the character
vector.

Programmatic Use
Block Parameter: xmtdatatypel, xmtdatatype2

Receive software FIFO size — Receiver FIFO size, in bytes
integer

Enter the receive software FIFO size, in bytes. This parameter specifies the size of the software FIFO
that the block uses to buffer characters between interrupt service and periodic execution.

Programmatic Use
Block Parameter: rcvfifosizel, rcvfifosize?2

See Also
FIFO Read | FIFO Read Binary | FIFO Read HDRS | RS-232 Send/Receive

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

3-37

3 Serial Communications Support: Blocks

3-38

RS232 State

Monitor board state information from send/receive block
Library: Simulink Real-Time / RS232

D
RS5232
}D State o

Description

The RS232 State block monitors the UART status that comes from a receive port of a send/receive
block. The driver puts the UART status in 16-bit or 32-bit data streams. The RS232 State block looks
at this status. Only the FIFO Read block passes this status information to its output port.

The RS232 State block accumulates errors over the whole input vector. An output error state is true if
it is true for any byte in the input vector.

Ports
Input

D — Input vector from send/receive block
[int8] | [uint8] | [int16] | [uint16]

The error status depends upon the data type of input vector D:

* 1int16, uint16 — The upper byte contains the error status bits from the UART.
* 1int8, uint8 — No error status is available. The Boolean outputs are false.

Output

D — Passthrough of input vector
int8 | uint8 | int16 | uintl16

Passes through the input vector D.

0 — Overrun error status
true | false

If the hardware FIFO in the UART is full when a character on the serial port enters the UART, this
output is true.

Dependency
To make this output visible, select the Overrun error output parameter.

P — Parity error status
true | false

If any byte in the input vector fails the parity check, this output is true.

RS232 State

Dependency
To make this output visible, select the Parity error output parameter.

F — Framing error status
true | false

If a framing error occurs on any character in this vector, this output is true. For example, a framing
error can occur if the baud rates between the transmitter and receiver do not match.

Dependency
To make this output visible, select the Framing error output parameter.

B — Line break interrupt status
true | false

If the UART detects a serial line break condition, this output is true. A line break interrupt is not an
error, but the UART treats it like an error state.

To detect a line break condition, the UART checks how long the serial line remains at voltage 0 (not
mark and not space). If the line is at voltage 0 for longer than the time required to receive one
character, the UART detects a line break. For some serial I/O port modules, disconnecting the serial
cable does not cause a line break.

Dependency

To make this output visible, select the Break interrupt output parameter.

Parameters

Overrun error output — Enable overrun error check
on (default) | of f

Select this check box to retrieve overrun error output.

Selecting this parameter makes the 0 port visible.

Programmatic Use
Block Parameter: overrun

Parity error output — Enable parity error check
on (default) | of f

Select this check box to retrieve parity error output.

Selecting this parameter makes the P port visible.

Programmatic Use
Block Parameter: parity

Framing error output — Enable framing error check
off (default) | on

Select this check box to retrieve framing error output.

Selecting this parameter makes the F port visible.

3-39

3 Serial Communications Support: Blocks

3-40

Programmatic Use
Block Parameter: frame

Break interrupt output — Enable break interrupt check
off (default) | on

Select this check box to retrieve break interrupt output.

Selecting this parameter makes the B port visible.

Programmatic Use
Block Parameter: breakint

See Also
Topics

“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced in R2008a

Serial Communications Support: Internal
Blocks

4 serial Communications Support: Internal Blocks

4-2

RS-232 Enable TX Interrupt

RS-232 Enable TX Interrupt Mainboard Baseboard block

Library: Simulink Real-Time / RS232 / Mainboard / Baseboard Serial
Internal blocks Baseboard
E Sarial
Enable TX Int
Description

The Enable TX Interrupt block enables the transmitter buffer empty interrupt when data is present in
the software FIFO.

The input port for controlling the interrupt is a Boolean value. If the input port value is true, the
Enable Transmit Interrupt block enables the transmitter buffer empty interrupt in the UART. After the
interrupt service routine empties the software FIFO, the interrupt is disabled.

Parameters

Base address — UART base address
0 (default)

Enter the base address of the UART for which you want to enable the transmitter buffer empty
interrupt.

Programmatic Use
Block Parameter: addr

See Also
Topics

“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced before R2006a

RS-232 Filter Interrupt Reason

RS-232 Filter Interrupt Reason

RS-232 Filter Interrupt Reason Mainboard Baseboard block

Library: Simulink Real-Time / RS232 / Mainboard / Baseboard Serial
Internal blocks Baseboard
S Serial E[
Filter Int Reason
Description

The Filter Interrupt Reason block filters the output of the Read Interrupt Status block.

If the condition that the interrupt query block reads from the IRR register matches the one specified
here, the output is true.

This block is used exclusively inside the interrupt service subsystem for this board.

Parameters

Port — Port for control data
1 (default) | 2

From the list, choose a port. This parameter specifies the port from which this block gets control
data.

Programmatic Use
Block Parameter: port

Filter value — Interrupt reason
Receive data (default) | Transmitter empty | Modem status change

This parameter specifies the interrupt reason that this filter block is looking for.

Note that Modem status change currently does nothing because the interrupt is not enabled.

Programmatic Use
Block Parameter: value

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced before R2006a

4-3

4 serial Communications Support: Internal Blocks

4-4

RS-232 Read Hardware FIFO

RS-232 Read Hardware FIFO Mainboard Baseboard block

Library: Simulink Real-Time / RS232 / Mainboard / Baseboard Serial
Internal blocks Basebaard
E Sarial D
Read HW FIFC
Description

The Read Hardware FIFO block reads characters from the I/O module FIFO in the UART.

It then outputs those characters as the low-order byte of an unsigned 32-bit integer vector with a
width of 65. This output vector is large enough to hold the maximum number of characters that the
FIFO can hold. The first element of the vector specifies the number of data elements in the remainder
of the vector.

If the input to the enable port (input port, labeled E) is not true, this block outputs a zero-length
vector. The following illustrates the vector.

- 32 bits - dota by
B R . g

UART errar
status

The UART error status can contain one of the following error values:
0x02 — Overrun error

0x04 — Parity error

0x08 — Framing error

0x01 — Break interrupt

The data byte ranges from 0 to 255.

The dialog box for the RS-232 FIFO Read block contains the following fields.

Parameters

Flush HW FIFO on startup — Flush FIFO on start
on (default) | off

Select this check box to flush the FIFO when the device starts up.

Programmatic Use
Block Parameter: flush

RS-232 Read Hardware FIFO

Base address — UART base address
0 (default)

Enter the base address of the UART for which you want to read the FIFO.

Programmatic Use
Block Parameter: addr

See Also
Topics

“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced before R2006a

4 serial Communications Support: Internal Blocks

4-6

RS-232 Read Interrupt Status

RS-232 Read Interrupt Status Mainboard Baseboard block
Library: Simulink Real-Time / RS232 / Mainboard / Baseboard Serial
Internal blocks Baseboard FC p

Serial
Dispatch Int Status g f»

Description
The Read Interrupt Status block reads the interrupt status for the boards in the system.

The output for this block is a vector with one 32-bit element for each port. Each element contains two
pieces of information for that port, where the 4 bytes are:

[0, 0, IRR, Reason]
The Read Interrupt Status block has signal output with the following format:

This output is a vector of integers. The values in the reason byte and their definitions are:

* 0 — This UART did not cause this interrupt.

* 1 — Receive characters are available.

* 2 — Transmit holding register is empty.

* 3 — Modem status has changed (ignored).

The second byte is the value read from the Interrupt Reason Register (IRR). This register is specific
to the 16450, 16550, and 16750 types of UARTs. Some bytes in this register give the active FIFO

depth. Other bytes give the maximum number of characters that the transmitter empty interrupt
handlers can write to the transmit FIFO.

Parameters

Base address 1 — UART base address for first interrupt status read
baddrl (default)

Enter the base address of the first UART for which you want to read the interrupt status.

Programmatic Use
Block Parameter: addrl

Base address 2 — UART base address for second interrupt status read
baddr2 (default)

Enter the base address of the second UART for which you want to read the interrupt status.

Programmatic Use
Block Parameter: addr2

RS-232 Read Interrupt Status

See Also
Topics

“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced before R2006a

4 serial Communications Support: Internal Blocks

4-8

RS-232 Setup

RS-232 Setup Mainboard Baseboard block

Library: Simulink Real-Time / RS232 / Mainboard / Baseboard Serial
Internal blocks Baseboard
Serial
Setup
Description

A setup block is a subsystem block that sets up the interface characteristics for the board.

Parameters

Base Address — Board base address
0 (default)

Enter the base address of the board that you are setting up.

Programmatic Use
Block Parameter: addr

Baud rate — Board baud rate
115200 (default)

From the list, choose a baud.

Programmatic Use
Block Parameter: baud

Number of data bits — Port data bits
8 (default) | 5|6 |7

From the list, choose either 5, 6, 7 or 8 to define the number of data bits for the port.

Programmatic Use
Block Parameter: width

Number of stop bits — Port stop bits
1 (default) | 2

From the list, choose either 1 or 2 to define the number of stop bits for the port.

Programmatic Use
Block Parameter: nstop

Parity — Port parity
None (default) | Even | 0dd | Mark | Space

From the list, choose None, Even, 0dd, Mark or Space. This parameter defines the receive and
transfer parity.

RS-232 Setup

Programmatic Use
Block Parameter: parity

FIFO mode — FIFO character depth mode
16 deep (default) | 64 deep |1 deep

From the list, choose 64 deep, 16 deep, or 1 deep. This parameter sets the transmit and receive
FIFO depth. The UART can operate with a FIFO depth of 1 character (1 deep), 16 characters (16
deep), or 64 characters (64 deep).

Programmatic Use
Block Parameter: fmode

Enable auto RTS/CTS — Enable handshaking control lines
off (default) | on

Select this check box to enable handshaking using the RTS and CTS modem control lines. If this is
not checked, handshaking is not done.

Programmatic Use
Block Parameter: ctsmode

Receive trigger level — Receive data available interrupt level
half full (default) | quarter full |almost full

From the list, choose 1, quarter full, half full, or almost full. This parameter defines a
trigger level for a receive data available interrupt. When the FIFO reaches the level specified in this
parameter, the driver asserts the receive data available interrupt.

Programmatic Use
Block Parameter: rlevel

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced before R2006a

4-9

4 serial Communications Support: Internal Blocks

4-10

RS-232 Write Hardware FIFO

RS-232 Write Hardware FIFO Mainboard Baseboard block

Library: Simulink Real-Time / RS232 / Mainboard / Baseboard Serial
Internal blocks AD Baseboard
Seria
3 it HW FIFO
Description

The Write Hardware FIFO block writes the data from the input port (labeled E) to the FIFO in the I/O
module UART for this port.

The following pseudo code describes the behavior of this FIFO.

if (enable is false)
return
else

{
if (input data empty)
disable transmitter buffer empty interrupt
return
else
copy input data to HW FIFO
}

In words: if the enable port (input port E) becomes true and the input data has length 0, then the
block turns off the transmitter buffer empty interrupt. Otherwise, the block adds input data to the
FIFO.

Parameters

Base address — FIFO UART base address
0 (default)

Enter the base address of the UART for which you want to write the FIFO.

Programmatic Use
Block Parameter: addr

See Also
Topics

“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-3

Introduced before R2006a

CAN, Encoders, Ethernet, EtherCAT

11

CAN Utility Blocks

5 cAN utility Blocks

5-2

CAN Pack

Pack individual signals into CAN message

Signalt

DriverDoorLod:
CAN Msg CAN Msg File: demoVNT_CANdEFiles.dbe
Standard 10: 250 Signal2 Standard 1D: 250 : Messege: DoorControlisg CAN Msg
. Standard |D: 250
Signals FassengerDoorlodk
CAN Padc CAN Padk
[With raw data input) {With manuslly specified dats input) CAN Fack

{With CANdE specified dats input)

X - CAN M Signalz CAN M
Deta Messeae: CAN Msg . Message: CAN Msg -,

Library

CAN Communication

Embedded Coder®/ Embedded Targets/ Host Communication

Description

The CAN Pack block loads signal data into a message at specified intervals during the simulation.

Note To use this block, you also need a license for Simulink software.

CAN Pack block has one input port by default. The number of block inputs is dynamic and depends on
the number of signals you specify for the block. For example, if your block has four signals, it has four
block inputs.

This block has one output port, CAN Msg. The CAN Pack block takes the specified input parameters
and packs the signals into a message.

Other Supported Features
The CAN Pack block supports:

* The use of Simulink Accelerator™ Rapid Accelerator mode. Using this feature, you can speed up
the execution of Simulink models.

* The use of model referencing. Using this feature, your model can include other Simulink models
as modular components.

* Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or unsigned
integers greater than 32 bits long.

For more information on these features, see the Simulink documentation.

Dialog Box

Use the Function Block Parameters dialog box to select your CAN Pack block parameters.

CAN Pack

Parameters

Data is input as
Select your data signal:

* raw data: Input data as a uint8 vector array. If you select this option, you only specify the
message fields. all other signal parameter fields are unavailable. This option opens only one
input port on your block.

* manually specified signals: Allows you to specify data signal definitions. If you select this
option, use the Signals table to create your signals. The number of block inputs depends on
the number of signals you specify.

* CANdDb specified signals: Allows you to specify a CAN database file that contains message
and signal definitions. If you select this option, select a CANdb file. The number of block
inputs depends on the number of signals specified in the CANdDb file for the selected message.

Note The block supports the following input signals data types: single, double, int8, int16, int32,
int64, uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

CANdb file

This option is available if you specify that your data is input via a CANdb file in the Data is input
as list. Click Browse to find the CANdb file on your system. The message list specified in the
CANCdb file populates the Message section of the dialog box. The CANdb file also populates the
Signals table for the selected message.

Note File names that contain non-alphanumeric characters such as equal signs, ampersands, and
so forth are not valid CAN database file names. You can use periods in your database name.
Rename CAN database files with non-alphanumeric characters before you use them.

Message list

This option is available if you specify that your data is input via a CANdb file in the Data is input
as field and you select a CANdb file in the CANdb file field. Select the message to display signal
details in the Signals table.

Message

Name

Specify a name for your CAN message. The default is CAN Msg. This option is available if you
choose to input raw data or manually specify signals. This option in unavailable if you choose to
use signals from a CANdDb file.

Identifier type

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to input raw data or manually specify signals. For
CANdb specified signals, the Identifier type inherits the type from the database.

Identifier

Specify your CAN message ID. This number must be a positive integer from 0 through 2047 for a
standard identifier and from 0 through 536870911 for an extended identifier. You can also specify

5-3

5 cAN utility Blocks

hexadecimal values using the hex2dec function. This option is available if you choose to input
raw data or manually specify signals.

Length (bytes)

Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb specified
signals for your data input, the CANdD file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to input raw data or manually specify signals.

Remote frame
Specify the CAN message as a remote frame.
Output as bus

Select this option for the block to output CAN messages as a Simulink bus signal. For more
information on Simulink bus objects, see “Composite Signals” (Simulink).

Signals Table
This table appears if you choose to specify signals manually or define signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and you cannot
edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal you create has the following values:

Name

Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit

Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64.

Byte order

Select either of the following options:

» LE: Where the byte order is in little-endian format (Intel®). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, which has the highest bit
index. For example, if you pack one byte of data in little-endian format, with the start bit at 20,
the data bit table resembles this figure.

CAN Pack

Bit Number

E Bit7| Bit6| Bit5 Bit4 Bit3 Bit2 Bitl Bit0
£

=

pd

P_’. 7) 5 4 3 2 1 1]
>

0O Byte 0

E 15 14 13 12 11 10 9 8
1]

O

Byte 1

3l

a0

29

Data bagins at th
Byte 3 bit and st

e least si
arts at 20

gnificant

a9

a8

a7

36

35

34

33

32

Data is wiritan up to the most significant
Byte 4 bit and ends at 27
47 45 45 44 43 42 41 40
Byte &
55 54 53 52 51 50 43 43
Byte 6
63 62 &1 &0 59 58 57 56
Byte 7

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest

Address

BE: Where byte order is in big-endian format (Motorola®). In this format you count bits from
the start, which is the least significant bit, to the most significant bit. For example, if you pack
one byte of data in big-endian format, with the start bit at 20, the data bit table resembles this

figure.

5-5

5 caN utility Blocks

Bit Number
E Bit7 Bit6 Bit 5 Bit4 Bit3 Bit2 Bitl Bit0
o
£
3
= 7 3 5 4 3 2 1 0
2
@& Byte0
© 15 14
L]
a Byte 1
13 18 17 16
Data isjwriten up to the most
Byte 2 significant bit and ends at|11
a1 20 23 23 27 26 5 24
Data beg_ins at the least significant
Byte 3 hit and starts at 20
EE] EE a7 36 a5 24 a3 3z
Byte 4
47 a5 45 44 43 4z 41 40
Byte §
55 54 53 52 51 50 43 43
Byte 6
63 62 61 &0 53 58 57 56
Byte 7

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

* signed (default)
* unsigned

* single
* double
Multiplex type

Specify how the block packs the signals into the CAN message at each timestep:

* Standard: The signal is packed at each timestep.

* Multiplexor: The Multiplexor signal, or the mode signal is packed. You can specify only
one Multiplexor signal per message.

* Multiplexed: The signal is packed if the value of the Multiplexor signal (mode signal) at
run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following types and values.

Signal Name Multiplex Type Multiplex Value

Signal-A Standard N/A

CAN Pack

Signal Name Multiplex Type Multiplex Value
Signal-B Multiplexed 1

Signal-C Multiplexed 0

Signal-D Multiplexor N/A

In this example:
* The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every
timestep.

» If the value of Signal-D is 1 at a particular timestep, then the block packs Signal-B along with
Signal-A and Signal-D in that timestep.

» If the value of Signal-D is 0 at a particular timestep, then the block packs Signal-C along with
Signal-A and Signal-D in that timestep.

» If the value of Signal-D is not 1 or 0, the block does not pack either of the Multiplexed signals
in that timestep.
Multiplex value

This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
pack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor

Specify the Factor value to apply to convert the physical value (signal value) to the raw value
packed in the message. See “Conversion Formula” on page 5-7 to understand how physical
values are converted to raw values packed into a message.

Offset

Specify the Offset value to apply to convert the physical value (signal value) to the raw value
packed in the message. See “Conversion Formula” on page 5-7 to understand how physical
values are converted to raw values packed into a message.

Min, Max

Define a range of signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Conversion Formula

The conversion formula is
raw value = (physical value - Offset) / Factor

where physical value is the original value of the signal, and raw value is the packed signal
value.

See Also

Blocks
CAN Unpack

5-7

5 cAN utility Blocks

Introduced in R2009a

CAN Unpack

CAN Unpack

Unpack individual signals from CAN messages

Signalt
. DriverDoorLodk
Can nsgIEssRBR CAN NS CANMsg Message: CAN Msg Signal2 Filz: demoVNT_CANdbFiles dbc

**3 Standerd ID: 2850 ’ Standard (D 250 . CAN Msg Message: DoorControllsg
Signal2 Standard ID:250

PassengerDoorLodk
Signal4

CAMN Unpadk CAN Unpack
{with raw data cutput)

CAN Unpadk

[With manuslly specified data cutput] (With CANdb specified dats output]

Library

CAN Communication

Embedded Coder/ Embedded Targets/ Host Communication

Description

The CAN Unpack block unpacks a CAN message into signal data using the specified output
parameters at every timestep. Data is output as individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN Unpack block has one output port by default. The number of output ports is dynamic and
depends on the number of signals you specify for the block to output. For example, if your block has
four signals, it has four output ports.

Other Supported Features
The CAN Unpack block supports:

* The use of Simulink Accelerator Rapid Accelerator mode. Using this feature, you can speed up the
execution of Simulink models.

* The use of model referencing. Using this feature, your model can include other Simulink models
as modular components.

* Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or unsigned
integers greater than 32 bits long.

For more information on these features, see the Simulink documentation.

Dialog Box

Use the Function Block Parameters dialog box to select your CAN message unpacking parameters.

5-9

5 caN utility Blocks

Parameters

Data to be output as

Select your data signal:

raw data: Output data as a uint8 vector array. If you select this option, you only specify the
message fields. The other signal parameter fields are unavailable. This option opens only one
output port on your block.

manually specified signals: Allows you to specify data signals. If you select this option, use
the Signals table to create your signals message manually.

The number of output ports on your block depends on the number of signals you specify. For
example, if you specify four signals, your block has four output ports.

CANdb specified signals: Allows you to specify a CAN database file that contains data
signals. If you select this option, select a CANdD file.

The number of output ports on your block depends on the number of signals specified in the
CANGdb file. For example, if the selected message in the CANdb file has four signals, your
block has four output ports.

Note For manually or CANdb specified signals, the default output signal data type is double. To
specify other types, use a Signal Specification block. This allows the block to support the following
output signal data types: single, double, int8, int16, int32, int64, uint8, uintl6, uint32, uint64, and
boolean. The block does not support fixed-point types.

CANdb file

This option is available if you specify that your data is input via a CANdb file in the Data to be
output as list. Click Browse to find the CANdb file on your system. The messages and signal
definitions specified in the CANdb file populate the Message section of the dialog box. The
signals specified in the CANdb file populate Signals table.

Note File names that contain non-alphanumeric characters such as equal signs, ampersands, and
so forth are not valid CAN database file names. You can use periods in your database name.
Rename CAN database files with non-alphanumeric characters before you use them.

Message list

This option is available if you specify that your data is to be output as a CANdb file in the Data to
be output as list and you select a CANdb file in the CANdb file field. You can select the message
that you want to view. The Signals table then displays the details of the selected message.

Message

Name

Specify a name for your CAN message. The default is CAN Msg. This option is available if you
choose to output raw data or manually specify signals.

Identifier type

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit

5-10

CAN Unpack

identifier. This option is available if you choose to output raw data or manually specify signals.
For CANdb-specified signals, the Identifier type inherits the type from the database.

Identifier

Specify your CAN message ID. This number must be a integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. If you specify —1, the block
unpacks the messages that match the length specified for the message. You can also specify
hexadecimal values using the hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Length (bytes)

Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb specified
signals for your output data, the CANdD file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to output raw data or manually specify signals.

Signals Table
This table appears if you choose to specify signals manually or define signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and you cannot
edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal you create has the following values:

Name

Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit

Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message. The start bit must be an integer from 0 through 63.

Length (bits)

Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64.

Byte order
Select either of the following options:
* LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, which has the highest bit

index. For example, if you pack one byte of data in little-endian format, with the start bit at 20,
the data bit table resembles this figure.

5-11

5 caN utility Blocks

5-12

Bit Number

E Bit7| Bit6| Bit5 Bit4 Bit3 Bit2 Bitl Bit0
£

=

pd

P_’. 7) 5 4 3 2 1 1]
>

0O Byte 0

E 15 14 13 12 11 10 9 8
1]

O

Byte 1

3l

a0

29

Data bagins at th
Byte 3 bit and st

e least si
arts at 20

gnificant

a9

a8

a7

36

35

34

33

32

Data is wiritan up to the most significant
Byte 4 bit and ends at 27
47 45 45 44 43 42 41 40
Byte &
55 54 53 52 51 50 43 43
Byte 6
63 62 &1 &0 59 58 57 56
Byte 7

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest

Address

BE: Where the byte order is in big-endian format (Motorola). In this format you count bits from
the start, which is the least significant bit, to the most significant bit. For example, if you pack
one byte of data in big-endian format, with the start bit at 20, the data bit table resembles this

figure.

CAN Unpack

Bit Number
E Bit7 Bit6 Bit 5 Bit4 Bit3 Bit2 Bitl
o
£
3
= 7 3 5 4 3 2 1
2
@& Byte0
© 15 14
©
a Byte 1
13 18 17
Data isjwriten up to the most
Byte 2 significant bit and ends at|11
a1 20 23 23 27 26 5
Data beg_ins at the least significant
Byte 3 hit and starts at 20
EE] EE a7 36 a5 24 a3
Byte 4
47 a5 45 44 43 4z 41
Byte §
55 54 53 52 51 50 43
Byte 6
63 62 61 &0 53 58 57
Byte 7

Bit0

16

24

a2

40

43

56

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type

Specify how the signal interprets the data in the allocated bits. Choose from:

* signed (default)
* unsigned

* single
* double
Multiplex type

Specify how the block unpacks the signals from the CAN message at each timestep:

* Standard: The signal is unpacked at each timestep.

* Multiplexor: The Multiplexor signal, or the mode signal is unpacked. You can specify only
one Multiplexor signal per message.

¢ Multiplexed: The signal is unpacked if the value of the Multiplexor signal (mode signal)
at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following values.

Signal Name

Multiplex Type

Multiplex Value

Signal-A

Standard

N/A

5-13

5 caN utility Blocks

5-14

Signal Name Multiplex Type Multiplex Value
Signal-B Multiplexed 1

Signal-C Multiplexed 0

Signal-D Multiplexor N/A

In this example:
» The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every
timestep.

» If the value of Signal-D is 1 at a particular timestep, then the block unpacks Signal-B along
with Signal-A and Signal-D in that timestep.

» If the value of Signal-D is 0 at a particular timestep, then the block unpacks Signal-C along
with Signal-A and Signal-D in that timestep.

» If the value of Signal-D is not 1 or 0, the block does not unpack either of the Multiplexed
signals in that timestep.
Multiplex value

This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
unpack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor

Specify the Factor value applied to convert the unpacked raw value to the physical value (signal
value). See “Conversion Formula” on page 5-15 to understand how unpacked raw values are
converted to physical values.

Offset

Specify the Offset value applied to convert the physical value (signal value) to the unpacked raw
value. See “Conversion Formula” on page 5-15 to understand how unpacked raw values are
converted to physical values.

Min, Max

Define a range of raw signal values. The default settings are - Inf (negative infinity) and Inf,
respectively. For CANdD specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Output Ports

Selecting an Output ports option adds an output port to your block.

Output identifier
Select this option to output a CAN message identifier. The data type of this port is uint32.
Output remote

Select this option to output the message remote frame status. This option adds a new output port
to the block. The data type of this port is uint8.

Output timestamp

Select this option to output the message time stamp. This option adds a new output port to the
block. The data type of this port is double.

CAN Unpack

Output length

Select this option to output the length of the message in bytes. This option adds a new output
port to the block. The data type of this port is uint8.

Output error

Select this option to output the message error status. This option adds a new output port to the
block. An output value of 1 on this port indicates that the incoming message is an error frame;
otherwise the output value is 0. The data type of this port is uint8.

Output status

Select this option to output the message received status. The status is 1 if the block receives new
message and 0 if it does not. This option adds a new output port to the block. The data type of
this port is uint8.

If you do not select an Output ports option, the number of output ports on your block depends on
the number of signals you specify.

Conversion Formula

The conversion formula is
physical value = raw value * Factor + Offset

where raw value is the unpacked signal value and physical value is the scaled signal value.

See Also

Blocks
CAN Pack

Introduced in R2009a

5-15

5 caN utility Blocks

CAN FD Pack

Pack individual signals into message for CAN FD bus

CaMFD
) Data bassage M=g [
Pack

CAM FD Pack

Library

Vehicle Network Toolbox: CAN FD Communication

Description

The CAN FD Pack block loads signal data into a message at specified intervals during the simulation.

Note To use this block, you also need a license for Simulink software.

The CAN FD Pack block has one input port by default. The number of block inputs is dynamic and
depends on the number of signals you specify for the block. For example, if your block has four
signals, it has four block inputs.

This block has one output port, Msg. The CAN FD Pack block takes the specified input parameters
and packs the signals into a bus message.

The block outputs CAN FD messages as a Simulink bus signal. For more information on Simulink bus
objects, see “Composite Signals” (Simulink).

Other Supported Features

The CAN FD Pack block supports:

* The use of Simulink Accelerator mode. Using this feature, you can speed up the execution of
Simulink models. For more information, see “Acceleration” (Simulink).

* Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or unsigned
integers greater than 32 bits long.

Dialog Box

Use the Function Block Parameters dialog box to select your CAN FD Pack block parameters.

5-16

CAN FD Pack

Parameters

Data is input as
Select your data signal:

* raw data: Input data as a uint8 vector array. If you select this option, you only specify the
message fields. All other signal parameter fields are unavailable. This option opens only one
input port on your block.

* manually specified signals: Allows you to specify data signal definitions. If you select this
option, use the Signals table to create your signals. The number of block inputs depends on
the number of signals you specify.

* CANdb specified signals: Allows you to specify a CAN database file that contains message
and signal definitions. If you select this option, select a CANdb file. The number of block
inputs depends on the number of signals specified in the CANdDb file for the selected message.

Note The block supports the following input signals data types: single, double, int8, int16, int32,
int64, uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

CANdb file

This option is available if you specify that your data is input via a CANdb file in the Data is input
as list. Click Browse to find the CANdb file on your system. The message list specified in the
CANCdb file populates the Message section of the dialog box. The CANdb file also populates the
Signals table for the selected message.

Note File names that contain non-alphanumeric characters such as equal signs, ampersands, and
so forth are not valid CAN database file names. You can use periods in your database name.
Rename CAN database files with non-alphanumeric characters before you use them.

Message list

This option is available if you specify that your data is input via a CANdb file in the Data is input
as field and you select a CANdb file in the CANdD file field. Select the message to display signal
details in the Signals table.

Message

Name

Specify a name for your CAN FD message. The default is Msg. This option is available if you
choose to input raw data or manually specify signals. This option in unavailable if you choose to
use signals from a CANdb file.

Protocol mode
Specify the message protocol mode as CAN FD or CAN.
Identifier type

Specify whether your message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to input raw data or manually specify signals. For
CANdb specified signals, the Identifier type inherits the type from the database.

5-17

5 caN utility Blocks

Identifier

Specify your message ID. This number must be a positive integer from 0 through 2047 for a
standard identifier and from 0 through 536870911 for an extended identifier. You can also specify
hexadecimal values using the hex2dec function. This option is available if you choose to input
raw data or manually specify signals.

Length (bytes)

Specify the length of your message. For CAN messages the value can be 0-8 bytes; for CAN FD
the value can be 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using CANdb specified
signals for your data input, the CANdb file defines the length of your message. This option is
available if you choose to input raw data or manually specify signals.

Remote frame

(Disabled for CAN FD protocol mode.) Specify the CAN message as a remote frame.
Bit Rate Switch (BRS)

(Disabled for CAN protocol mode.) Enable bitrate switch.

Signals Table
This table appears if you choose to specify signals manually or define signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and you cannot
edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal you create has the following values:

Name

Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit

Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. For CAN the start bit must be an integer from 0 through 63, for CAN FD 0
through 511, within the number of bits in the message. (Note that message length is specified in
bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64. The sum of all the signal lengths in a message is limited to the number of bits

in the message length; that is, all signals must cumulatively fit within the length of the message.
(Note that message length is specified in bytes and signal length in bits.)

Byte order
Select either of the following options:
* LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, proceeding to the next

higher byte as you cross a byte boundary. For example, if you pack one byte of data in little-
endian format, with the start bit at 20, the data bit table resembles this figure.

5-18

CAN FD Pack

Bit Number

E Bit7| Bit6| Bit5 Bit4 Bit3 Bit2 Bitl Bit0
£

=

pd

P_’. 7) 5 4 3 2 1 1]
>

0O Byte 0

E 15 14 13 12 11 10 9 8
1]

O

Byte 1

3l

a0

29

Data bagins at th
Byte 3 bit and st

e least si
arts at 20

gnificant

a9

a8

a7

36

35

34

33

32

Data is wiritan up to the most significant
Byte 4 bit and ends at 27
47 45 45 44 43 42 41 40
Byte &
55 54 53 52 51 50 43 43
Byte 6
63 62 &1 &0 59 58 57 56
Byte 7

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest

Address

BE: Where byte order is in big-endian format (Motorola). In this format you count bits from the
start, which is the least significant bit, to the most significant bit, proceeding to the next lower
byte as you cross a byte boundary. For example, if you pack one byte of data in big-endian

format, with the start bit at 20, the data bit table resembles this figure.

5-19

5 cAN utility Blocks

Bit Number
E Bit7 Bit6 Bit 5 Bit4 Bit3 Bit2 Bitl Bit0
o
£
3
= 7 3 5 4 3 2 1 0
2
@& Byte0
© 15 14
L]
a Byte 1
13 18 17 16
Data isjwriten up to the most
Byte 2 significant bit and ends at|11
a1 20 23 23 27 26 5 24
Data beg_ins at the least significant
Byte 3 hit and starts at 20
EE] EE a7 36 a5 24 a3 3z
Byte 4
47 a5 45 44 43 4z 41 40
Byte §
55 54 53 52 51 50 43 43
Byte 6
63 62 61 &0 53 58 57 56
Byte 7

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

* signed (default)
* unsigned
* single
* double
Note: If you have a double signal that does not align exactly to the message byte boundaries,

to generate code with Embedded Coder you must check Support long long under Device
Details in the Hardware Implementation pane of the Configuration Parameters dialog.

Multiplex type
Specify how the block packs the signals into the message at each timestep:

* Standard: The signal is packed at each timestep.

* Multiplexor: The Multiplexor signal, or the mode signal is packed. You can specify only
one Multiplexor signal per message.

* Multiplexed: The signal is packed if the value of the Multiplexor signal (mode signal) at
run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following types and values.

5-20

CAN FD Pack

Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A

Signal-B Multiplexed 1

Signal-C Multiplexed 0

Signal-D Multiplexor N/A

In this example:
* The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every
timestep.

» If the value of Signal-D is 1 at a particular timestep, then the block packs Signal-B along with
Signal-A and Signal-D in that timestep.

» If the value of Signal-D is 0 at a particular timestep, then the block packs Signal-C along with
Signal-A and Signal-D in that timestep.

» If the value of Signal-D is not 1 or 0, the block does not pack either of the Multiplexed signals
in that timestep.
Multiplex value

This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
pack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor

Specify the Factor value to apply to convert the physical value (signal value) to the raw value
packed in the message. See “Conversion Formula” on page 5-21 to understand how physical
values are converted to raw values packed into a message.

Offset

Specify the Offset value to apply to convert the physical value (signal value) to the raw value
packed in the message. See “Conversion Formula” on page 5-21 to understand how physical
values are converted to raw values packed into a message.

Min, Max

Define a range of signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Conversion Formula

The conversion formula is
raw value = (physical value - Offset) / Factor

where physical value is the original value of the signal, and raw value is the packed signal
value.

5-21

5 caN utility Blocks

See Also

Blocks

Introduced in R2018a

5-22

CAN FD Unpack

CAN FD Unpack

Unpack individual signals from CAN FD messages

CAaM FD
) M=g hassage Diata [
Unpack

CAN FD Unpack

Library

Vehicle Network Toolbox: CAN FD Communication

Description

The CAN FD Unpack block unpacks a CAN FD message into signal data using the specified output
parameters at every timestep. Data is output as individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN FD Unpack block has one output port by default. The number of output ports is dynamic and
depends on the number of signals you specify for the block to output. For example, if your block has
four signals, it has four output ports.

Other Supported Features

The CAN FD Unpack block supports

* The use of Simulink Accelerator mode. Using this feature, you can speed up the execution of
Simulink models. For more information, see “Acceleration” (Simulink).

» Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or unsigned
integers greater than 32 bits long.

Dialog Box
Use the Function Block Parameters dialog box to select your message unpacking parameters.

Parameters

Data to be output as
Select your data signal:

5-23

5 caN utility Blocks

5-24

* raw data: Output data as a uint8 vector array. If you select this option, you only specify the
message fields. The other signal parameter fields are unavailable. This option opens only one
output port on your block.

* manually specified signals: Allows you to specify data signals. If you select this option, use
the Signals table to create your signals message manually.

The number of output ports on your block depends on the number of signals you specify. For
example, if you specify four signals, your block has four output ports.

* CANdbD specified signals: Allows you to specify a CAN database file that contains data
signals. If you select this option, select a CANdD file.

The number of output ports on your block depends on the number of signals specified in the
CANGdb file. For example, if the selected message in the CANdD file has four signals, your
block has four output ports.

Note For manually or CANdb specified signals, the default output signal data type is double. To
specify other types, use a Signal Specification block. This allows the block to support the following
output signal data types: single, double, int8, int16, int32, int64, uint§, uintl6, uint32, uint64, and
boolean. The block does not support fixed-point types.

CANdb file

This option is available if you specify that your data is input via a CANdb file in the Data to be
output as list. Click Browse to find the CANdb file on your system. The messages and signal
definitions specified in the CANdb file populate the Message section of the dialog box. The
signals specified in the CANdb file populate Signals table.

Note File names that contain non-alphanumeric characters such as equal signs, ampersands, and
so forth are not valid CAN database file names. You can use periods in your database name.
Rename CAN database files with non-alphanumeric characters before you use them.

Message list

This option is available if you specify that your data is to be output as a CANdb file in the Data to
be output as list and you select a CANdb file in the CANdD file field. You can select the message
that you want to view. The Signals table then displays the details of the selected message.

Message

Name

Specify a name for your message. The default is Msg. This option is available if you choose to
output raw data or manually specify signals.

Protocol mode
Specify the message protocol mode as CAN FD or CAN.
Identifier type

Specify whether your message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to output raw data or manually specify signals.
For CANdb-specified signals, the Identifier type inherits the type from the database.

CAN FD Unpack

Identifier

Specify your message ID. This number must be a integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. If you specify —1, the block
unpacks the messages that match the length specified for the message. You can also specify
hexadecimal values using the hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Length (bytes)
Specify the length of your message. For CAN messages the value can be 0-8 bytes; for CAN FD
the value can be 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using CANdb specified

signals for your output data, the CANdD file defines the length of your message. This option is
available if you choose to output raw data or manually specify signals.

Signals Table
This table appears if you choose to specify signals manually or define signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and you cannot
edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal you create has the following values:

Name

Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit

Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. For CAN the start bit must be an integer from 0 through 63, for CAN FD 0
through 511, within the number of bits in the message. (Note that message length is specified in
bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64. The sum of all the signal lengths in a message is limited to the number of bits

in the message length; that is, all signals must cumulatively fit within the length of the message.
(Note that message length is specified in bytes and signal length in bits.)

Byte order
Select either of the following options:
* LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, proceeding to the next

higher byte as you cross a byte boundary. For example, if you pack one byte of data in little-
endian format, with the start bit at 20, the data bit table resembles this figure.

5-25

5 cAN utility Blocks

5-26

Bit Number

E Bit7| Bit6| Bit5 Bit4 Bit3 Bit2 Bitl Bit0
£

=

< 2 1 1]
P_’. 7) 5 4 3

>

0O Byte 0

E 15 14 13 12 11 10 9 8
1]

O

Byte 1

31 30 29
Data bagins at the least significant

Byte 3 bit and starts at 20

a3 s a7 £l a5 34 a3 az

Data is wiritan up to the most significant

Byte 4 bit and ends at 27

47 45 45 44 43 42 41 40
Byte &

55 54 53 52 51 50 43 43
Byte 6

63 62 &1 &0 59 58 57 56
Byte 7

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest
Address

BE: Where the byte order is in big-endian format (Motorola). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, proceeding to the next
lower byte as you cross a byte boundary. For example, if you pack one byte of data in big-
endian format, with the start bit at 20, the data bit table resembles this figure.

CAN FD Unpack

Bit Number
E Bit7 Bit6 Bit 5 Bit4 Bit3 Bit2 Bitl Bit0
o
£
3
= 7 3 5 4 3 2 1 0
2
@& Byte0
© 15 14
L]
a Byte 1
13 18 17 16
Data isjwriten up to the most
Byte 2 significant bit and ends at|11
a1 20 23 23 27 26 5 24
Data beg_ins at the least significant
Byte 3 hit and starts at 20
EE] EE a7 36 a5 24 a3 3z
Byte 4
47 a5 45 44 43 4z 41 40
Byte §
55 54 53 52 51 50 43 43
Byte 6
63 62 61 &0 53 58 57 56
Byte 7

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

signed (default)

unsigned

single

double

Note: If you have a double signal that does not align exactly to the message byte boundaries,

to generate code with Embedded Coder you must check Support long long under Device
Details in the Hardware Implementation pane of the Configuration Parameters dialog.

Multiplex type
Specify how the block unpacks the signals from the message at each timestep:

Standard: The signal is unpacked at each timestep.

Multiplexor: The Multiplexor signal, or the mode signal is unpacked. You can specify only
one Multiplexor signal per message.

Multiplexed: The signal is unpacked if the value of the Multiplexor signal (mode signal)
at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following values.

5-27

5 cAN utility Blocks

5-28

Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A

Signal-B Multiplexed 1

Signal-C Multiplexed 0

Signal-D Multiplexor N/A

In this example:
* The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every
timestep.

» If the value of Signal-D is 1 at a particular timestep, then the block unpacks Signal-B along
with Signal-A and Signal-D in that timestep.

» If the value of Signal-D is 0 at a particular timestep, then the block unpacks Signal-C along
with Signal-A and Signal-D in that timestep.

+ If the value of Signal-D is not 1 or 0, the block does not unpack either of the Multiplexed
signals in that timestep.
Multiplex value

This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
unpack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor

Specify the Factor value applied to convert the unpacked raw value to the physical value (signal
value). See “Conversion Formula” on page 5-29 to understand how unpacked raw values are
converted to physical values.

Offset

Specify the Offset value applied to convert the physical value (signal value) to the unpacked raw
value. See “Conversion Formula” on page 5-29 to understand how unpacked raw values are
converted to physical values.

Min, Max

Define a range of raw signal values. The default settings are - Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Output Ports
Selecting an Output ports option adds an output port to your block.

Output identifier
Select this option to output a message identifier. The data type of this port is uint32.
Output remote

(Disabled for CAN FD protocol.) Select this option to output the message remote frame status.
This option adds a new output port to the block. The data type of this port is uint8.

Output timestamp

Select this option to output the message time stamp. This option adds a new output port to the
block. The data type of this port is double.

CAN FD Unpack

Output length

Select this option to output the length of the message in bytes. This option adds a new output
port to the block. The data type of this port is uint8.

Output error

Select this option to output the message error status. This option adds a new output port to the
block. An output value of 1 on this port indicates that the incoming message is an error frame;
otherwise the output value is 0. The data type of this port is uint8.

Output status

Select this option to output the message received status. The status is 1 if the block receives new
message and 0 if it does not. This option adds a new output port to the block. The data type of
this port is uint8.

Output Bit Rate Switch (BRS)

(Disabled for CAN protocol.) Select this option to output the message bitrate switch. This option
adds a new output port to the block. The data type of this port is boolean.

Output Error Status Indicator (ESI)

(Disabled for CAN protocol.) Select this option to output the message error status. This option
adds a new output port to the block. The data type of this port is boolean.

Output Data Length Code (DLC)

(Disabled for CAN protocol.) Select this option to output the message data length. This option
adds a new output port to the block. The data type of this port is double.

If you do not select an Output ports option, the number of output ports on your block depends on
the number of signals you specify.

Conversion Formula

The conversion formula is
physical value = raw value * Factor + Offset

where raw value is the unpacked signal value and physical value is the scaled signal value.

See Also

Blocks

Introduced in R2018a

5-29

Model-Based Ethernet Communications
Support

6 Model-Based Ethernet Communications Support

Model-Based Ethernet Communications

6-2

In this section...

“What Is Model-Based Ethernet Communications?” on page 6-2
“Ethernet Hardware” on page 6-2

“PCI Bus and Slot Numbers” on page 6-2

“MAC Addresses” on page 6-3

“Network Buffer Pointers” on page 6-3

“Filter Type and Filter Address Blocks” on page 6-3

“Execution Priority” on page 6-3

“ Simulink Real-Time Ethernet Block Library” on page 6-4

What Is Model-Based Ethernet Communications?

The Simulink Real-Time software supports communication from the target computer to other systems
or devices using raw Ethernet (Ethernet packets). Raw Ethernet is a direct method to send and
receive packets with the real-time application using the Ethernet protocol. To transfer data using
Ethernet packets, you must manually create Ethernet frames. This topic assumes that you are
knowledgeable about the IEEE® 802.3 standard.

By itself, raw Ethernet does not implement the TCP/IP or UDP standards. For information about
modeling protocols built upon raw Ethernet, see “Real-Time UDP”.

Ethernet Hardware

Before you start, provide a dedicated Ethernet card on your target computer. A dedicated Ethernet
card is to be used only for model-based Ethernet communications and not for communication
between the development and target computers. Therefore, your target computer must have at least
two Ethernet cards, one to connect the development and target computers, and one for model-based
Ethernet communication. The Simulink Real-Time model-based Ethernet communication blocks
support selected members of the following Intel (Vendor ID 0x8086) chip families:

+ Intel 8255X
* Intel Gigabit

PCI Bus and Slot Numbers

To use the model-based Ethernet blocks, specify the PCI bus and slot number of the dedicated
Ethernet card in the Real-Time Ethernet Configuration block. To identify which Ethernet card is
available:

1 Boot the target computer with which you want to perform model-based Ethernet
communications.

2 Examine the startup screen on the target computer. Note the PCI bus and slot information on the
bottom right of the status window. This information represents the Ethernet card that is installed
on the target computer for dedicated communication between the development and target
computers.

Model-Based Ethernet Communications

3 Inthe MATLAB Command Window, type

tg = slrt;
getPCIInfo(tg, 'ethernet')

This command determines which Ethernet cards are installed in the target computer.

4 In the list, find the Ethernet card with a bus and slot different from the bus and slot that are
displayed on the target computer monitor.

5 Note the PCI bus and slot of the free Ethernet card. Use the card for model-based Ethernet
communications.

MAC Addresses

Several Ethernet blocks require you to enter MAC addresses. The MAC address must be vector-
based. To obtain the vector-based version of a MAC address, use the macaddr command. This
command converts a character vector-based MAC address to a vector-based one. For example:

macaddr('01:23:45:67:89:ab")
[1 35 69 103 137 171]

When an Ethernet block requires a MAC address, you can enter either of the following in the address
field:

* Command macaddr('MAC address character vector'), for example:

macaddr('01:23:45:67:89:ab"')
* Vector-based output from the macaddr command, for example:

[1 35 69 103 137 171]

Network Buffer Pointers

The Simulink Real-Time Ethernet block library uses pointers to refer to network buffers. Blocks can
pass pointers to these buffers as single uint32pointers. They can also refer to a chain of network
buffer packets.

Filter Type and Filter Address Blocks
The Filter Type and Filter Address blocks accept a chain of network buffers as input. These blocks
specify criteria that the drivers use while parsing each buffer on the chain. Based on these criteria,

the drivers either pass the packets through the port or drop the packets. When using these blocks,
create your models with filter blocks to pass data only from expected sources.

Execution Priority

The raw Ethernet blocks have the following execution priority, from first to last:

1 Real-Time Ethernet Configuration
2 The remaining raw Ethernet and network buffer library blocks

6-3

6 Model-Based Ethernet Communications Support

6-4

Simulink Real-Time Ethernet Block Library

To access the Simulink Real-Time Ethernet library blocks, in the Simulink Real-Time block library,
double-click Ethernet. The Simulink Real-Time Ethernet library is displayed.

The Simulink Real-Time Ethernet library contains commonly used Ethernet blocks at the top level of
the library. Use these blocks to create your models.

The Ethernet library also has a sublibrary, Network Buffers, which contains blocks specific to the
management of Ethernet network buffers. The blocks in this sublibrary are core blocks for use in
creating other subsystems. However, the top-level Ethernet blocks provide enough functionality for
model-based Ethernet communications.

See Also

More About

. “Real-Time Transmit and Receive over Ethernet”
. “Filtering on MAC Address”
. “Filtering on EtherType”

Ethernet Blocks

7 Ethernet Blocks

Real-Time Ethernet Configuration

Configure network interface for real-time raw Ethernet communication

Library: Simulink Real-Time / Ethernet

Id: 1

Description

To initialize the network and network buffers, use the Real-Time Ethernet Configuration block.

Parameters
Device

Device ID — Ethernet board identifier
1-8

From the list, select a unique number to identify the Ethernet board.

Programmatic Use
Block Parameter: ID

Driver — Drivers for chip families that this block supports
Intel 8255X (default) | Intel Gigabit

Identifies the drivers for the development computer Ethernet chip families that the block supports.

Programmatic Use
Block Parameter: Driver

PCI bus — PCl bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: Bus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: Slot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

7-2

Real-Time Ethernet Configuration

Programmatic Use
Block Parameter: Function

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. - 1 means that sample time is
inherited.

Programmatic Use
Block Parameter: SampleTime

Addressing

Address source — Source of MAC address
EEPROM (default) | Specify

From the list, select:

* EEPROM — The block gets the Ethernet card MAC address that is built into the Ethernet card.
* Specify — Explicitly enter a MAC address for the Ethernet card.
To see the MAC parameter, select Specify.

Programmatic Use
Block Parameter: AddressSource

MAC — MAC address for Ethernet card
macaddr('00:00:00:00:00:00") (default) | macaddr (' xx:xx:XX:XX:XX:XX)

Enter the MAC address for the Ethernet card.

To make this parameter visible, set Address source to Specify.

Programmatic Use
Block Parameter: MAC

Rx promiscuous — Receive all packets regardless of their destination address
off (default) | on

To direct the model to receive all packets regardless of their destination address, select this check
box.

Programmatic Use
Block Parameter: RxPromiscuous

Multicast address list — List of multicast address vectors
{} (default) | cell array

Enter a list of multicast address vectors as a cell array. The Ethernet Rx block uses these addresses
and the broadcast and unicast addresses.

Programmatic Use
Block Parameter: Multicast

7 Ethernet Blocks

Advanced

Rx bad frames — Receive all packets, including erroneous ones
off (default) | on

To direct the model to receive all packets, including erroneous ones (such as CRC error and
alignment error), select this check box.

Programmatic Use
Block Parameter: RxBad

Rx short frames — Receive all packets, including short ones
off (default) | on

To direct the model to receive all packets, including frames that are less than 64 bytes in length,
select this check box.

The Intel Gigabit Ethernet controller does not distinguish between bad packets and short packets.
Therefore, selecting either Rx Bad Frames or Rx Short Frames produces the same results for
Driver type Intel Gigabit.

Programmatic Use
Block Parameter: RxShort

Max MTU — Maximum transmission unit number
1518 (default) | numeric

Specify a maximum transmission unit number (MTU). With this parameter, you can specify a smaller
maximum transmission unit number.

Programmatic Use
Block Parameter: MaxMTU

Tx threshold — Determine when device begins DMA on packets from memory
224 (default) | numeric

Enter a value that controls when the Ethernet device begins to perform direct memory access (DMA)
on packets from memory.

This parameter applies only to Driver type Intel 8255X. Before you change this parameter, see
Intel 8255x 10/100 Mbps Ethernet Controller Family — Open Source Software Developer Manual.

Programmatic Use
Block Parameter: TxThreshold

Tx buffers — Maximum number of queued transmit buffers
128 (default) | numeric

Enter the maximum number of buffers that the driver holds in the queue before it drops new transmit
requests.

The number of buffers must be a multiple of 8.

Programmatic Use
Block Parameter: TxBuffers

Rx buffers — Maximum number of queued receive buffers
64 (default) | numeric

Real-Time Ethernet Configuration

Enter the maximum number of buffers that the driver holds in the queue before it drops new receive
packets.

The number of buffers must be a multiple of 8.

Programmatic Use
Block Parameter: RxBuffers

Display tuning information — Display statistical data
off (default) | on

To enable a display of statistical data collected during the run of the model, select this check box.

Programmatic Use
Block Parameter: ShowTune

See Also

External Websites
WWW.iS0.0rg

Introduced in R2014b

7-3

https://www.iso.org

7 Ethernet Blocks

Create Ethernet Packet

Create Ethernet packet based on the MAC address and EtherType provided

Library: Simulink Real-Time / Ethernet

Create Ethemet Paket

Netwark Buffer

Description

To create the Ethernet packets that you want to transfer, use the Create Ethernet Packet block.

Ports
Input

Data — Payload data for Ethernet packet
vector

Data Types: uint8

Length — Number of bytes in data vector
scalar

Output

Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.

Parameters

Destination MAC — MAC address of the target computer to receive the data
macaddr(00:1B:21:85:37:6C) (default) | macaddr(xx: xx:XxXx:XX:XX:XX)

Enter the MAC address of the target computer that receives the data.

Programmatic Use
Block Parameter: DstMac

EtherType (use 0 for length) — EtherType or the use of Ethernet length
hex2dec('0000"') (default) | numeric

Enter a value that represents either the EtherType or the use of Ethernet length:

* EtherType — If you are creating Ethernet packets that use EtherType values, to specify which
prototype the Ethernet frame transfers, enter a valid EtherType value.

* Ethernet length — If you are creating Ethernet packets that use Ethernet lengths, enter 0.

Create Ethernet Packet

Programmatic Use
Block Parameter: EtherType

See Also
Extract Ethernet Packet

External Websites
WWW.iS0.0rg

Introduced in R2008b

7-7

https://www.iso.org

7 Ethernet Blocks

Ethernet Init

Initialize network card for real-time raw Ethernet communication

Library: Simulink Real-Time / Ethernet

Ethemet
Initialization

Id: 1

Description

To initialize the Ethernet communication channel, use the Ethernet Init block. Use a separate
Ethernet Init block for each Ethernet board.

Note The Ethernet Init and Buffer Mngmt blocks are combined in the Real-Time Ethernet
Configuration block. For new development, use this block.

Parameters
Device

Device ID — Ethernet board identifier
1-8
From the list, select a unique number to identify the Ethernet board.

Programmatic Use
Block Parameter: ID

Driver — Drivers for chip families that this block supports
Intel 8255X (default) | Intel Gigabit

Identifies the drivers for the development computer Ethernet chip families that the block supports.

Programmatic Use
Block Parameter: Driver

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: Bus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: Slot

Ethernet Init

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: Function

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: SampleTime

Addressing

Address source — Source of MAC address
EEPROM (default) | Specify

From the list, select:

* EEPROM — The block gets the Ethernet card MAC address that is built into the Ethernet card.
* Specify — Explicitly enter a MAC address for the Ethernet card.
To see the MAC parameter, select Specify.

Programmatic Use
Block Parameter: AddressSource

MAC — MAC address for Ethernet card
macaddr('00:00:00:00:00:00") (default) | macaddr('xx:xx:XX:XX:XX:XX)

Enter the MAC address for the Ethernet card.

To make this parameter visible, set Address source to Specify.

Programmatic Use
Block Parameter: MAC

Rx promiscuous — Receive all packets regardless of their destination address
off (default) | on

To direct the model to receive all packets regardless of their destination address, select this check
box.

Programmatic Use
Block Parameter: RxPromiscuous

Multicast address list — List of multicast address vectors
{} (default) | cell array

Enter a list of multicast address vectors as a cell array. The Ethernet Rx block uses these addresses
and the broadcast and unicast addresses.

7 Ethernet Blocks

7-10

Programmatic Use
Block Parameter: Multicast

Advanced

Rx bad frames — Receive all packets, including erroneous ones
off (default) | on

To direct the model to receive all packets, including erroneous ones (such as CRC error and
alignment error), select this check box.

Programmatic Use
Block Parameter: RxBad

Rx short frames — Receive all packets, including short ones
off (default) | on

To direct the model to receive all packets, including frames that are less than 64 bytes in length,
select this check box.

The Intel Gigabit Ethernet controller does not distinguish between bad packets and short packets.
Therefore, selecting either Rx Bad Frames or Rx Short Frames produces the same results for
Driver type Intel Gigabit.

Programmatic Use
Block Parameter: RxShort

Max MTU — Maximum transmission unit number
1518 (default) | numeric

Specify a maximum transmission unit number (MTU). With this parameter, you can specify a smaller
maximum transmission unit number.

Programmatic Use
Block Parameter: MaxMTU

Tx threshold — Determine when device begins DMA on packets from memory
224 (default) | numeric

Enter a value that controls when the Ethernet device begins to perform direct memory access (DMA)
on packets from memory.

This parameter applies only to Driver type Intel 8255X. Before you change this parameter, see
Intel 8255x 10/100 Mbps Ethernet Controller Family — Open Source Software Developer Manual.

Programmatic Use
Block Parameter: TxThreshold

Tx buffers — Maximum number of queued transmit buffers
128 (default) | numeric

Enter the maximum number of buffers that the driver holds in the queue before it drops new transmit
requests.

The number of buffers must be a multiple of 8.

Ethernet Init

Programmatic Use
Block Parameter: TxBuffers

Rx buffers — Maximum number of queued receive buffers
64 (default) | numeric

Enter the maximum number of buffers that the driver holds in the queue before it drops new receive
packets.

The number of buffers must be a multiple of 8.

Programmatic Use
Block Parameter: RxBuffers

Display tuning information — Display statistical data
off (default) | on

To enable a display of statistical data collected during the run of the model, select this check box.

Programmatic Use
Block Parameter: ShowTune

See Also
Real-Time Ethernet Configuration

Topics
“Real-Time Transmit and Receive over Ethernet”

External Websites
WWW.iS0.0rg

Introduced in R2008b

7-11

https://www.iso.org

7 Ethernet Blocks

7-12

Ethernet Rx

Receive data over Ethernet network
Library: Simulink Real-Time / Ethernet ‘ }

Description

To receive Ethernet packets and to filter on the received packets, use the Ethernet Rx block. You can
filter packets by EtherType or length. You can use multiple Ethernet Rx blocks with the same device
ID. However, you must configure each block to filter a unique set of packets.

Ports
Output

Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.

Parameters
Rx

Device ID — Ethernet board identifier
1-8

From the list, select a unique number to identify the Ethernet board. Select the same Device ID as
the ID that you selected for the Real-Time Ethernet Configuration block.

Programmatic Use
Block Parameter: ID

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: SampleTime

Filter

Filter criteria — Filter on EtherTypes or Ethernet lengths
Receive all unmatched types [0 to 65535] (default) | Receive unmatched lengths [0
to 1500] | Receive unmatched EtherTypes [150 to 65535] | Specify types to match

From the list, select how you want to filter on EtherTypes (Ethernet II framing standard) or Ethernet
lengths (IEEE 802.3 framing standard).

Ethernet Rx

Receive all unmatched types [0 to 65535] — Output all unmatched packets, both
Ethernet II framing and IEEE 802.3 framing standards.

Receive unmatched lengths [0 to 1500] — Output all packets with IEEE 802.3 framing
standard.

Receive unmatched EtherTypes [150 to 65535] — Output all output packets with
Ethernet II framing standard.

Specify types to match — Explicitly enter the EtherTypes to output.

To see the Receive these types (vector of types 0-65535) parameter, select Specify types to
match.

Programmatic Use
Block Parameter: MatchOther
Block Parameter: MatchLength

Receive these types (vector of types 0-65535) — EtherTypes to output
[hex2dec('0000"')] (default) | vector

Enter a vector of EtherTypes that you want to output.

To make this parameter visible, set Filter criteria to Specify types to match.

Programmatic Use
Block Parameter: EtherType

See Also
Ethernet Tx

External Websites
WWW.1S0.0rg

Introduced in R2008b

7-13

https://www.iso.org

7 Ethernet Blocks

7-14

Ethernet Tx

Transmit data over Ethernet network
Library: Simulink Real-Time / Ethernet

Ethers
Network Buffer Transmit
Id

Description

To send network packets, use the Ethernet Tx block.

Ports
Input

Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.

Parameters

Device ID — Ethernet board identifier
1-8

From the list, select a unique number to identify the Ethernet board. Select the same Device ID as
the ID that you selected for the Real-Time Ethernet Configuration block.

Programmatic Use
Block Parameter: ID

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: SampleTime

See Also
Ethernet Rx

External Websites
WWW.iS0.0rg

Introduced in R2008b

https://www.iso.org

Extract Ethernet Packet

Extract Ethernet Packet

Extract data from Ethernet packet
Library: Simulink Real-Time / Ethernet

Exiract Ethernet Packet
Netwark Buffer Sre

Type
Length

Description

To extract data from an Ethernet packet, use the Extract Ethernet Packet block.

Ports
Input

Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.
Output

Data — Packet payload data
vector

Data Types: uint8

Dst — Ethernet address of packet destination
PXXX XXX XXX XXX

Src — Ethernet address of packet source
PXXX XXX XXX XXX

Type — EtherType of data
scalar

Length — Number of bytes in data vector
numeric

Parameters

Data Size — Number of bytes to extract
1500 (default) | numeric

Enter the data size (in bytes) for the data that you want to extract from an Ethernet packet.

Programmatic Use
Block Parameter: EthernetDataSize

See Also
Create Ethernet Packet

7-15

7 Ethernet Blocks

External Websites
WWW.is0.0rg

Introduced in R2008b

7-16

https://www.iso.org

Filter Address

Filter Address

Filter Ethernet packets based on MAC address
Library: Simulink Real-Time / Ethernet ’{

Match
Filter by
Network Buffer MAG Address
Remaind

Description

To filter network buffer packets by their MAC addresses, use the Filter Address block. See “Filter
Type and Filter Address Blocks” on page 6-3 for cautions on setting the parameters for this block.

Ports
Input

Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.
Output

Match [Addr (#)] — Network buffer containing packets that match filter
vector

If you specify one MAC address, one port appears with the name Match. The block directs packets
with this MAC address to port Match.

If you specify more than one MAC address, multiple ports appear, matched to the values in parameter
MAC Address. The block directs packets with the first address to Match Addr (1), with the second
address to Match Addr (2), and so on.

Dependency
The port count depends on how many MAC addresses appear in parameter MAC Address.

Remainder — Network buffer chain containing packets that do not match filter
vector of network buffers

Packets that do not meet the filter criteria appear at this port.

Dependency

To activate this port, clear Drop non-matches.

Parameters

MAC Address — MAC addresses to filter
{[macaddr('00:00:00:00:00:00")]} (default) | cell array

7-17

7 Ethernet Blocks

7-18

Enter a cell array that contains the MAC addresses for the filter.

Programmatic Use
Block Parameter: Address

Drop non-matches — Discard packets that do not match filter criteria
'off' (default) | 'on'

To discard packets that do not match the filter criteria, select this parameter.

To output packets that do not match the filter criteria, clear this parameter.

Programmatic Use
Block Parameter: Drop

Filter on destination address — Filter packets that match destination address
"off' (default) | 'on'

To filter addresses for the source address, clear this check box (default).

To filter addresses for the destination address, select this check box.

Programmatic Use
Block Parameter: Dst

See Also
Filter Type

Topics
“Filter Type and Filter Address Blocks” on page 6-3

External Websites
WWW.1S0.0rg

Introduced in R2008b

https://www.iso.org

Filter Type

Filter Type

Filter Ethernet packets based on EtherType
Library: Simulink Real-Time / Ethernet

Filter by
Network Buffer EtherTyps

Description

To filter network buffer packets by their EtherType values, use the Filter Type block. See “Filter Type
and Filter Address Blocks” on page 6-3 for cautions on setting the parameters for this block.

Ports
Input

Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.
Output

Match Length — Network buffer chain containing packets that match length filter
vector of network buffers

One port receives packets with EtherType values within 1-1500.
Dependency

To activate this port, select parameter Match Length (1-1500).

Match [Type (#)] — Network buffer chain containing packets that match filter
vector of network buffers

If you specify one Ethertype, one port appears with the name Match. The block directs packets with
this EtherType to port Match.

If you specify more than one EtherType, multiple ports appear, matched to the values in parameter
EtherType. The block directs packets with the first EtherType to Match Type (1), with the second
EtherType to Match Type (2), and so on.

Dependency
The port count depends on how many EtherTypes appear in parameter EtherType.

Remainder — Network buffer chain containing packets that do not match filter
vector of network buffers

Packets that do not meet the filter criteria appear at this port.

7-19

7 Ethernet Blocks

Dependency

To activate this port, clear Drop non-matches.

Parameters

Match Length (1-1500) — Match packets with EtherType values within 1-1500
‘on' (default) | 'off"

To match packets whose EtherType values fall within the range 1-1500, select this check box.

Programmatic Use
Block Parameter: EtherLength

EtherType — EtherTypes on which to filter
[hex2dec('0000"')] (default) | vector

Enter a vector of EtherTypes on which you want to filter.

Programmatic Use
Block Parameter: EtherType

Drop non-matches — Discard packets that do not match filter criteria
"off' (default) | 'on'

To discard packets that do not match the filter criteria, select this parameter.

To output packets that do not match the filter criteria, clear this parameter.

Programmatic Use
Block Parameter: Drop

See Also
Filter Type

Topics
“Filter Type and Filter Address Blocks” on page 6-3

External Websites
WWW.iS0.0rg

Introduced in R2008b

7-20

https://www.iso.org

Header Extract

Header Extract

Extract header data from Ethernet packet
Library: Simulink Real-Time / Ethernet

\\\\\\\\

Description

To extract the header data of network buffer packets, use the Header Extract block.

Ports
Input

Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.
Output

Data — Packet payload data
vector

Data Types: uint8

Dst — Ethernet address of packet destination
PXXX XXX XXX XXX

Src — Ethernet address of packet source
"XXX XXX XXX XXX

Type — EtherType of data
scalar

Length — Number of bytes in data vector
numeric

See Also
Extract Ethernet Packet

External Websites
WWW.is0.0rg

Introduced in R2008b

7-21

https://www.iso.org

Network Buffer Library for Model-Based
Ethernet Communications Support

8 Network Buffer Library for Model-Based Ethernet Communications Support

Network Buffer Blocks

8-2

The Ethernet library includes a sublibrary, Network Buffers, that contains blocks for managing
Ethernet network buffers. The blocks in this sublibrary are core blocks that you can use to create
other subsystems.

The Ethernet drivers use a set of buffers, Ethernet network buffers, that it uses to store data that is
sent and received over the network. The block organizes these buffers into several pools, each with
different values of maximum data size. The buffers include information about the data itself. The
block allocates the buffer pools during initialization and does not change the buffer pools during run
time. When the block sends, receives, or processes data, it allocates a buffer. When the operation is
done, it frees the buffer.

You can control the number of buffers allocated for each allowable value of data size by using the
Buffer Mngmt block parameter Buffer pool sizes. Allocate enough buffers for the maximum number
of data packets that you anticipate receiving, sending, or processing at one time. You can send and
receive more data by allocating many more buffers. However, each allocation reserves more memory,
which you cannot then use for other purposes. Running out of buffers means that data cannot be sent
and received until the block frees allocated buffers.

Monitor the buffer pool statistics at run time to find the optimal values that an application requires.
To monitor the buffer pool statistics, select the Display tuning information check box in the Buffer
Mngmt block parameters dialog box.

See Also
Buffer Mngmt

Network Buffer Library Blocks

O Network Buffer Library Blocks

9-2

Buffer Mngmt

Initialize network buffer pools
Library: Simulink Real-Time / Ethernet / Network Buffers

Metwork Buffer
Management

Description

To initialize network buffers, use the Buffer Mngmt block.

Parameters
This block has two tabs, Main and Advanced.
Main

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: SampleTime

Advanced

Modify the values of the parameters in this tab only if you have a thorough understanding of the
Ethernet protocol. Changing the values of these parameters can change the behavior of your system.

Buffer pool sizes (256, 512, 1024, 2048) — Buffers for each pool size
[100 10 10 200] (default)

Enter a vector of the number of buffers for each pool size (256, 512, 1024, or 2048).

Programmatic Use
Block Parameter: pool sizes

Display tuning information — Show statistical data from run
off (default) | on

Select this check box to enable a display of statistical data collected during the run of the model.

Programmatic Use
Block Parameter: ShowTune

See Also

Topics
“Network Buffer Blocks” on page 8-2

Buffer Mngmt

External Websites
WWW.is0.0rg

Introduced in R2008b

9-3

https://www.iso.org

O Network Buffer Library Blocks

9-4

Chain Size

Determine the number of network buffers in the chain
Library: Simulink Real-Time / Ethernet / Network Buffers

MB

Chain Size
N

~

Description

To determine the number of buffers that are on the chain, use the Chain Size block.

See Also

Topics
“Network Buffer Blocks” on page 8-2

External Websites
WWW.is0.0rg

Introduced in R2008b

https://www.iso.org

Compose

Dat
® nB

Compose

Compose
Create a network buffer from raw input data
Library: Simulink Real-Time / Ethernet / Network Buffers
b
b
Description

To create a network buffer, use the Compose block. This block creates a pointer to a network buffer.

See Also

Topics
“Network Buffer Blocks” on page 8-2

External Websites
WWW.is0.0rg

Introduced in R2008b

https://www.iso.org

O Network Buffer Library Blocks

9-6

Extract

Data

Extract
Extract raw data from network buffer
Library: Simulink Real-Time / Ethernet / Network Buffers
7
Description

To extract network buffer packets, use the Extract block.

Parameters

Packet size (-1: inherit) — Size of packet to extract
-1 (default)

Enter the packet size for the network buffer packet to extract. Enter -1 (default) to inherit the packet

size.

Programmatic Use
Block Parameter: packetSize

See Also

Topics
“Network Buffer Blocks” on page 8-2

External Websites
WWW.iS0.0rg

Introduced in R2008b

https://www.iso.org

Link

Link

Link vector of network buffers into a chain
Library: Simulink Real-Time / Ethernet / Network Buffers / Baseboard

Serial Internal blocks

MB
Link

-

Description

To convert a vector of network buffer signals into a linked list of signals, use the Link block.

See Also

Topics
“Network Buffer Blocks” on page 8-2

External Websites
WWW.is0.0rg

Introduced in R2008b

https://www.iso.org

9 Network Buffer Library Blocks

9-8

Manage

Output or buffer packets as indicated by the parameters

Library: Simulink Real-Time / Ethernet / Network Buffers
Description

Output or buffer packets as indicated by the parameters.

Parameters

Chain size — Output behavior related to chain
-1 (default)

Specify the queuing (output) behavior of the block as packets are received.

MNB
Manage

-

Value Description
inf Output all packets. No queuing occurs.
0 Delete all packets, no packets pass through.

Positive number, C |Pass through the first C packets

Negative number, C |Pass through the last C packets

Programmatic Use
Block Parameter: chainSize

Buffer size — Buffer behavior related to packets
1 (default)

Specify the buffering behavior of the block as packets are received.

Value Description
inf Buffer all remaining packets. Delete no packets.
0 Do not buffer packets. Delete all remaining packets.

Positive number, B |Buffer the remaining first B packets.

Negative number, B |Buffer the remaining last B packets.

Programmatic Use
Block Parameter: bufferSize

Threshold — Buffering threshold minimum
1 (default)

Enter a minimum threshold before which this block begins to output buffers.

Manage

Value Description

0 Specifies no threshold.

Negative number, T |Delay passing buffer packets until T packets are buffered.

Positive number, T |Passes buffer packets if T packets are buffered.

Programmatic Use
Block Parameter: Threshold

See Also

Topics
“Network Buffer Blocks” on page 8-2

External Websites
WWW.iso.org

Introduced in R2015a

9-9

https://www.iso.org

O Network Buffer Library Blocks

9-10

Merge

Merge the incoming network buffer chains into one
Library: Simulink Real-Time / Ethernet / Network Buffers

MNB
Marge

Description

To combine signal pointers to a linked list, use the Merge block.

Parameters

Number of inputs — Number of pointers for linked list
2 (default)

Enter the number of network buffer signal pointers to combine into a linked list.

Programmatic Use
Block Parameter: NumberInputs

See Also

Topics
“Network Buffer Blocks” on page 8-2

External Websites
WWW.1S0.0rg

Introduced in R2008b

https://www.iso.org

Split

Split

Split a network buffer chain
Library: Simulink Real-Time / Ethernet / Network Buffers

MB
) Split

Description

To separate a linked list of buffer pointers into separate individual pointers, use the Split block.

Parameters

Number of outputs — Number of pointers in linked list
2 (default)

Enter the number of pointers the input linked list should be separated into.

» If the number of buffers is the same as this value, this block splits them and outputs them in the
order they appear in the vector, or in reverse order (depending on the setting of the Split in
reverse order parameter).

» If the number of buffers is less than Number of outputs, the block outputs zeros (0s) for the
extra output ports.

+ If the number of buffers is greater than Number of outputs, the block either deletes the extra
buffers, or chains the remaining buffers together (depending on the setting of the Allow chaining
for last signal parameter).

Programmatic Use
Block Parameter: NumberQutputs

Split in reverse order — Reverse split order
off (default) | on

Select this check box to split out the network buffers in the reverse order in which they are received.

Programmatic Use
Block Parameter: Reverse

Allow chaining for last signal — Chain remaining network buffers
off (default) | on

Select this check box to chain together remaining network buffers. There might be remaining buffers
if the incoming linked list contains more buffers than the number in Number of outputs.

Clear this check box to delete the remaining buffers.

Programmatic Use
Block Parameter: CatchAll

9-11

9 Network Buffer Library Blocks

9-12

See Also

Topics
“Network Buffer Blocks” on page 8-2

External Websites
WWW.1S0.0rg

Introduced in R2008b

https://www.iso.org

Unlink

Unlink

Unlink a chain into a vector of network buffers
Library: Simulink Real-Time / Ethernet / Network Buffers

NB
Uinlink P

LV

Description

To convert a linked list of signals into a vector of network buffer signal, use the Unlink block.

Parameters

Vector length (-1: inherit) — Number of signals in linked list
-1 (default)

Enter the number of signals in the linked list of signals that you want to separate. Enter -1 (default)
to inherit the vector length.

Programmatic Use
Block Parameter: vectorLength

See Also

Topics
“Network Buffer Blocks” on page 8-2

External Websites
WWW.iS0.0rg

Introduced in R2008b

9-13

https://www.iso.org

Model-Based EtherCAT Communications
Support

* “Modeling EtherCAT Networks” on page 10-2

* “Install TwinCAT 3” on page 10-5

* “Hardware Setup Requirements for TwinCAT 3” on page 10-6
* “Configure EtherCAT Network with TwinCAT 3” on page 10-7
* “Install EtherCAT Network for Execution” on page 10-10

* “Configure EtherCAT Master Node Model” on page 10-11

* “EtherCAT Distributed Clock Algorithm” on page 10-16

* “Fixed-Step Size Derivation” on page 10-21

» “EtherCAT Protocol Mapping” on page 10-22

* “EtherCAT Configurator Component Mapping” on page 10-23
» “EtherCAT Data Types” on page 10-24

* “EtherCAT Init Block DC Error Values” on page 10-25

* “EtherCAT Error Codes” on page 10-26

10 Model-Based EtherCAT Communications Support

Modeling EtherCAT Networks

Ethernet for Control Automation (EtherCAT) is an open Ethernet network protocol for real-time
distributed control, for example for automotive and industrial systems. The EtherCAT protocol
provides:

» Deterministic and fast cycle times

* Inexpensive I/O module cost

EtherCAT networks consist of one master node and several slave nodes. The Simulink Real-Time
EtherCAT sublibrary supports only the master node of an EtherCAT network. You cannot emulate

slave nodes using the blocks in the EtherCAT sublibrary. However, you can use these blocks to
prototype multiple EtherCAT networks with multiple Ethernet cards.

You model an EtherCAT network using one of the third-party EtherCAT configurators: TwinCAT®3
from Beckhoff® or EC-Engineer from Acontis.

The Beckhoff ET9000 configurator is no longer supported.

To map the network model into a Simulink Real-Time model, become familiar with the following
mappings:

» “EtherCAT Protocol Mapping” on page 10-22
* “EtherCAT Configurator Component Mapping” on page 10-23

Blocks and Tasks

At a minimum, each EtherCAT model must contain an EtherCAT Init block. The EtherCAT Init block
contains a reference to an EtherCAT Network Information (ENI) file. The ENI file describes the
network, including the device variables of the network.

If you generate the configuration file with TwinCAT 3, use the software to create at least one cyclic
input/output task. Link this task to at least one input channel and one output channel on each slave
device. If you generate the file using Acontis EC-Engineer, the software creates one default task
linked to all slave device input/output channels.

When you know the input/output cycle ticks, set the Fixed-step size in the Model Configuration
Parameters dialog box to a value that is consistent with the following constraints:

* The cycle tick of all EtherCAT slave devices.
* The sample times of all other blocks in the Simulink model.

For more information, see “Fixed-Step Size Derivation” on page 10-21.

When you know the device variables that you are using in your model, add an EtherCAT PDO Receive
or EtherCAT PDO Transmit block for every EtherCAT device variable. When you add these blocks to
the model, the block obtains the list of device variables from the configuration file in the EtherCAT
Init block. When you specify a device variable in the block dialog box, the software updates the block
information with device variable information from the configuration file.

To transmit CANopen over EtherCAT (CoE) information through your network, add SDO Upload and
SDO Download blocks to your model. The SDO blocks come in two types, synchronous and
asynchronous. From the EtherCAT perspective, there is little difference in behavior of these types.

10-2

Modeling EtherCAT Networks

The difference arises during the execution of the real-time application. The Sync SDO blocks halt
execution while they wait for a response. The Async SDO blocks continue executing and poll the I/O
module for a response.

To avoid a CPU overload, set the sample time for the synchronous SDO blocks to a value at least three
times that for the PDO blocks.

To track the state of the network or force the network into a particular state, add an EtherCAT Get
State or EtherCAT Set State block.

Order of Network Events

The EtherCAT Init block schedules network events in two phases:

1 Phase 1 — Reads data from EtherCAT variables from the last received frame into EtherCAT PDO
Receive blocks.

2 Either of the following blocks, in arbitrary order:
» EtherCAT PDO Receive — Processes data read from the last frame received from a slave

device.

* EtherCAT PDO Transmit — Buffers data to send in the next frame to a slave device.

3 Each of the following blocks, in arbitrary order:

* EtherCAT Sync SDO Upload — Queues an SDO frame with new value, waits for response.

* EtherCAT Sync SDO Download — Queues an SDO frame with request for data, waits for
response.

* EtherCAT Async SDO Upload — Queues an SDO frame with new value, checks for response,
continues execution.

* EtherCAT Async SDO Download — Queues an SDO frame with request for data, checks for
response, continues execution.

Synchronous upload and download take at least three ticks of the fastest PDO cycle tick to
complete processing.

* EtherCAT Get State — Reads current state of EtherCAT network.
* EtherCAT Set State — Queues request to change current state of EtherCAT network.
4 Phase 2 — Sends the PDO frames, followed by the next available queued SDO frames.

See Also

EtherCAT Async SDO Download | EtherCAT Async SDO Upload | EtherCAT Async SSC/SoE Download
| EtherCAT Async SSC/SoE Upload | EtherCAT Get State | EtherCAT Init | EtherCAT PDO Receive |
EtherCAT PDO Transmit | EtherCAT Set State | EtherCAT Sync SDO Download | EtherCAT Sync SDO
Upload | EtherCAT Sync SSC/SoE Download | EtherCAT Sync SSC/SoE Upload

More About

. “Fixed-Step Size Derivation” on page 10-21

. “EtherCAT Protocol Mapping” on page 10-22

. “EtherCAT Configurator Component Mapping” on page 10-23

10-3

10 Model-Based EtherCAT Communications Support

. “EtherCAT Data Types” on page 10-24
“EtherCAT Init Block DC Error Values” on page 10-25

10-4

Install TwinCAT 3

Install TwinCAT 3

To install the EtherCAT network and configuration software, execute the following steps. For
requirements, see “Hardware Setup Requirements for TwinCAT 3” on page 10-6.

Install a dedicated, EtherCAT compatible Ethernet card on the development computer.
2 Download or purchase the Beckhoff TwinCAT 3 configurator (www.beckhoff.com).

The Beckhoff ET9000 configurator is no longer supported.
3 Install Microsoft® Visual Studio® on your development computer.

TwinCAT 3 uses the Microsoft Visual Studio IDE desktop as its user interface. See the TwinCAT 3
documentation for the required version.

4 Install the TwinCAT 3 software on your development computer.

The next task is “Configure EtherCAT Network with TwinCAT 3” on page 10-7.

See Also

External Websites
. www.beckhoff.com
. www.acontis.com/eng

10-5

https://www.beckhoff.com
https://www.beckhoff.com
http://www.acontis.com/eng

10 Model-Based EtherCAT Communications Support

Hardware Setup Requirements for TwinCAT 3

For both the development and target computers, the EtherCAT I/O module has the following
requirements:

* Each Ethernet card must be compatible with EtherCAT communication.

* To keep non EtherCAT traffic from interfering with the protocol timing, assign each Ethernet card
a static IP address and a nonroutable subnet.

For information on setting up the dedicated Ethernet card, see your network administrator.

* On the target computer, install two Ethernet cards. Dedicate one card to linking the development
and target computers. Dedicate the other to model-based EtherCAT communication.

* On the development computer, as a best practice, install two Ethernet cards in addition to your
local area network card. Dedicate one card to linking the development and target computers.
Dedicate the other to EtherCAT network configuration.

* Configure the development computer Ethernet card that you are using for EtherCAT to enable
only the Internet Protocol Version 4 (TCP/IPv4) driver. See the TwinCAT 3 documentation for
information on manually creating an EtherCAT configuration file.

With only one card on the development computer, before configuring the EtherCAT network, unplug
the Ethernet link cable and plug in the EtherCAT network cable. Before building and downloading the
model, unplug the EtherCAT network cable, plug in the Ethernet link cable, disable the EtherCAT
filter, and restart your development computer.

10-6

Configure EtherCAT Network with TwinCAT 3

Configure EtherCAT Network with TwinCAT 3

To configure the EtherCAT network using TwinCAT 3, execute the following steps.
This procedure assumes that you are familiar with TwinCAT 3 and its documentation.

Before configuring the network, carry out the steps in “Install TwinCAT 3” on page 10-5.

Scan EtherCAT Network

The rest of this example assumes that your EtherCAT network consists of Beckhoff EK1100, EL3062,
and EL4002 modules connected in that order, followed by a terminator.

To scan an EtherCAT network with TwinCAT 3:

1 Connect your EtherCAT network to the development computer Ethernet port dedicated to
EtherCAT. Turn on the network.
Start Microsoft Visual Studio and create a TwinCAT 3 project.

In the TwinCAT menu, start the device scanner.

The scanner reports that new I/O devices have been found.

4 In the list of Ethernet devices that the scanner detects on the development computer, select the
Ethernet device into which you plugged your EtherCAT network.

If you do not see an Ethernet device identified as an EtherCAT device, check your EtherCAT
network configuration and power supply.

5 Scan for EtherCAT boxes on your network.

The scanner reports the EtherCAT devices on your network.
Disable free run mode.

In your TwinCAT project, check that the scanner downloaded the required information about
your EtherCAT devices.

Configure EtherCAT Master Node Data

Before configuring the master node of an EtherCAT network, scan the network with TwinCAT.
To configure the master node, execute the following steps.

Create EtherCAT Task

To create and configure an EtherCATtask:

1 In TwinCAT 3, add an item to your system task list.

Provide a name for the task, for example Task 1 and configure Task 1 as a task with image.

2 In the task list, select Task 1 and set its cycle ticks value to a value in milliseconds, such as 10
for 10 milliseconds.

3 Record the cycle tick in milliseconds.

10-7

10 Model-Based EtherCAT Communications Support

10-8

In the Model Configuration Parameters dialog box, use the cycle tick to calculate a value for the
Fixed-step size (fundamental sample time) box. To allow Simulink to calculate the sample
time, select Auto.

Configure EtherCAT Task Inputs

To configure the task inputs:

A W N R

In TwinCAT 3, under Term 1, access the nodes Term 2 and AI Standard Channel 1.
Drag the Value node of AI Standard Channel 1 tothe Task 1 inputs.

Configure the Term 1 inputs as variables.

Link the AT Standard Channel 1 variable to Term 2.

Configure EtherCAT Task Outputs

To configure the task outputs:

A W N

In TwinCAT 3, under Term 1, access the nodes Term 3 and A0 Outputs Channel 1.
Drag the Analog output node of AO Outputs Channel 1 tothe Task 1 outputs.
Configure the Term 1 analog outputs as variables.

Link the Analog output variable to Term 3.

Configure EtherCAT Distributed Clocks

To configure the Term 3 distributed clock:

1
2

In TwinCAT 3, under Term 3, access the DC tab.
Change the DC operation mode to DC Synchron.

Export and Save EtherCAT Configuration with TwinCAT 3

The EtherCAT Network Information (ENI) file represents the master node of an EtherCAT network. To
create the ENI file, scan and configure the network withTwinCAT 3.

To export the ENI file from TwinCAT 3, execute the following steps.

1

Under the Device 1 (EtherCAT) node, in the EtherCAT tab, execute the command to export
the configuration file.

In the file save dialog box, enter an XML file name, such as BeckhoffAIOconfig.xml.

Caution The ENI file is formatted as an XML file, with the XML file extension. Building the real-
time application produces an XML file with the same name as your model. To avoid a conflict, use
an ENI file name that is different from the name of your model.

Save the Microsoft Visual Studio TwinCAT project file.

In the file save dialog box, enter an SLN file name, such as BeckhoffAIOconfig.

To review or modify your configuration, open the project SLN file using Microsoft Visual Studio. If you
modify the configuration, save both the XML and SLN files.

Configure EtherCAT Network with TwinCAT 3

The next task is “Install EtherCAT Network for Execution” on page 10-10.

10-9

10 Model-Based EtherCAT Communications Support

Install EtherCAT Network for Execution

10-10

To install the EtherCAT Network for execution using the target computer as master node, execute the
following steps. For requirements, see “Hardware Setup Requirements for TwinCAT 3” on page 10-6.

1 Record the PCI bus and PCI slot for the existing Ethernet cards in the target computer. For more
on identifying and selecting Ethernet cards for linking the development and target computers,
see “Ethernet Card Selection by Index”.

Install a dedicated, EtherCAT compatible Ethernet card on the target computer.

Record the PCI bus and PCI slot for the new Ethernet card. Check the PCI bus and PCI slot for
the existing card. To select the Ethernet card required for the Ethernet link, update the Simulink
Real-Time environment settings.

4 Connect your EtherCAT network to the target computer Ethernet port dedicated to EtherCAT.
Turn on the network.

The next task is “Configure EtherCAT Master Node Model” on page 10-11.

Configure EtherCAT Master Node Model

Configure EtherCAT Master Node Model

EtherCAT Init
Mebhwork Device 0

Target Scope
Status 11

L

EtherCAT Init Scope
o Target Scope
» Id- 2
Scope 1
" Term 3 (EL4002).AC Cutputs Channel 1_Analog output
PH-._J » convert CH1_EL4002_Tx ™D Matwork Device 0
Sine Wavel pats Type Conversioni EtherCAT PDO Transmit
i Term 3 (EL4002).AOQ Cutputs Channel 2_Analog output
Jh'U » convert CH2_EL4002_Tx ™D Metwork Device O
Sine WaveZ Data Type Conversion2 EtherCAT PDO Transmit 1
Term 2 (EL3062) Al Standard Channel 1.Valua o
Network Device 0
EtherCAT PDO Recsive CH1_EL3062_Rx
Target Scope
Term 2 (EL3062).Al Standard Channel 2. Valua o Id:- 3
Network Device 0 CH2_EL3062_Fx o
EtherCAT PDO Receive Scope 2

Before configuring the model, carry out the steps in “Configure EtherCAT Network with TwinCAT 3”
on page 10-7.

To configure model xpcEthercatBeckhoffAIO for execution using the target computer as master
node, execute the following steps.

Configure EtherCAT Init Block
Before you use the EtherCAT Init block, configure the EtherCAT network withTwinCAT 3.
This procedure assumes that you are familiar with TwinCAT 3 and its documentation.

As part of the configuration process, create and save an EtherCAT Network Information (ENI) file.
See “Configure EtherCAT Network with TwinCAT 3” on page 10-7.

If you configure EtherCAT distributed clocks in master shift mode, using the IEEE 1588 Sync

Execution block in the same model produces a build error. To include EtherCAT distributed clocks
and IEEE 1588 synchronized execution in the same model, use EtherCAT bus shift mode.

10-11

10 Model-Based EtherCAT Communications Support

To configure the EtherCAT Init block of model xpcEthercatBeckhoffAIOQ, execute the following
steps.
1 Open model xpcEthercatBeckhoffAIO.

Double-click the EtherCAT Init block.

3 At the Config file (ENI) text box, browse to the EtherCAT Network Information (ENI) file that
you created when you configured the network (here, 'BeckhoffAIOconfig.xml"'). You can
enter the file name with or without single quotes.

4 Take the default value 0 for parameter Device index.

If the model includes more than one EtherCAT network, enter a unique Device index for each
network. Enter the same value for all blocks in each network.

5 Enter the PCI bus and PCI slot for the EtherCAT port that you are connecting to your EtherCAT
network. See “Install EtherCAT Network for Execution” on page 10-10.

6 Take the default value Large model for parameter DC Tuning.

EtherCAT Configuration e
EtherCAT Init (mask)

This block is used to initialize the EtherCAT Master based on the
information in the config file (EtherCAT Network Information -ENI).

Config File (ENI) : |BecthﬁAI{]c0nﬁg.xml | Browse
Device Index : | 0 |
PCIBus: |2 PCISlot : |0 | PCI Function : |0
Refresh Data
DC Tuning | Large model -

[] Enable Log and Debugging

Cancel Help Apply

7 To update the data in the EtherCAT Init block and propagate it to the other EtherCAT blocks,
click Refresh Data.

8 Click OK.

Configure EtherCAT PDO Receive Blocks

To configure the EtherCAT PDO Receive blocks of model xpcEthercatBeckhoffAIO, execute the
following steps. You must have selected a valid ENI file in the EtherCAT Init block.

This procedure assumes that you are familiar with TwinCAT 3 and its documentation.

1 Double-click the EtherCAT PDO Receive block labeled EtherCAT PDO Receive.

10-12

Configure EtherCAT Master Node Model

Set parameter Device Index to the value set in the EtherCAT Init block.

From the Signal Name list, select the EtherCAT network being accessed, here Term 2
(EL3062) .AI Standard Channel 1.Value.

4 Note the value of parameter Sample Time, which is in seconds.

Block Parameters: EtherCAT PDO Receive et
Block Information

EtherCAT receive variable

Device Index: |0 A

Signal Name: |Term 2 (EL3062).Al Standard Channel 1.Value -

Signal Information

Signal Offset : 352
Signal Type : int16
Type Size (bits) : 16
signal Dimension : 1
Sample Time : 0.01

Cancel Help Apply

5 Click OK.

Execute steps 5-9 for the EtherCAT PDO Receive block labeled EtherCAT PDO Receive 1.

Configure EtherCAT PDO Transmit Blocks

To configure the EtherCAT PDO Transmit blocks of model xpcEthercatBeckhoffAIO, execute the
following steps. You must have selected a valid ENI file in the EtherCAT Init block.

This procedure assumes that you are familiar with TwinCAT 3 and its documentation.

Open model xpcEthercatBeckhoffAIO.
Double-click the EtherCAT PDO Transmit block labeled EtherCAT PDO Transmit.
Set parameter Device Index to the value set in the EtherCAT Init block.

A W N R

Select a Signal Name value consistent with the EtherCAT network being accessed, here Term 3
(EL4002) .A0 Outputs Channel 1.Analog output.

5 Note the value of parameter Sample Time, which is in seconds.

10-13

10 Model-Based EtherCAT Communications Support

10-14

6

Block Parameters: EtherCAT PDO Transmit >
Block Information

EtherCAT transmit variable

Device Index: |0 -

Signal Name: |Term 3 (EL4002).A0 Outputs Channel 1.Analog output -

Signal Information

Signal Offset : 208
Signal Type : int1l6
Type Size (bits) : 16
Signal Dimension : 1
Sample Time : 0.01

Cancel Help Apply

Click OK.

Execute steps 2-6 for the EtherCAT PDO Transmit block labeled EtherCAT PDO Transmit 1.

Configure EtherCAT Model Configuration Parameters

To configure the configuration parameters for model xpcEthercatBeckhoffAIOQ, execute the
following steps. You must have selected a valid ENI file in the EtherCAT Init block. For more
information, see “Fixed-Step Size Derivation” on page 10-21.

Open model xpcEthercatBeckhoffAIO.

Calculate the greatest common divisor (GCD) of the Sample Time values for the EtherCAT tasks
and for all source blocks in the model. In this case, the GCD is 0.010.

In the Simulink Editor, on the Real-Time tab, from the Prepare section, click Hardware
Settings. Select Configuration Parameters > Solver.

Set the Type parameter to Fixed-step and Fixed-step size (fundamental sample time) to
one of the following:

* An integral divisor of the GCD value, in seconds.
* auto, if all other source blocks in the model have defined sample times.

In this case, set it to 0.010.

The model configuration parameters dialog box looks like this figure.

Configure EtherCAT Master Node Model

& Configuration Parameters: xpcEthercatBeckhoffAIQ/Configuration (Active)

Q

v v

Solver

Data Import/Export
Optimization

Diagnostics

Hardware Implementation
Model Referencing
Simulation Target

Simulation time

Start time: (0.0 Stop time: |inf

Solver options

Type: |Fixed-step w | Solver: |discrete (no continuous states)

» Code Generation ¥ Additional parameters
» Coverage
» HDL Code Generation Fixed-step size (fundamental sample time): |0.010
Tasking and sample time options
Allow tasks to execute concurrently on target Configure Tasks...
|:| Automatically handle rate transition for data transfer
Cancel Help Apply
5 Click OK.

The next tasks are building, downloading, and executing the EtherCAT master node model.

10-15

10 Model-Based EtherCAT Communications Support

EtherCAT Distributed Clock Algorithm

10-16

In this section...
“Master Shift Mode” on page 10-16
“Bus Shift Mode” on page 10-18

“Limitations” on page 10-20

An EtherCAT network consists of a master node (the target computer) connected to an arbitrary
number of slave nodes (devices). Each node contains a clock that controls its internal operation.
When you enable distributed clocks, EtherCAT designates one clock in the network as the reference
clock. The EtherCAT distributed clock (DC) algorithm then synchronizes the operation of multiple
network nodes to the reference clock.

The DC algorithm operates in two phases. In phase 1, the algorithm aligns the clocks of DC-enabled
network nodes other than the master node with the clock of the first DC-enabled slave node. In phase
2, the algorithm aligns the remaining unaligned clock with the reference clock.

Do not manually adjust the sample time of the real-time application in either master shift mode or bus
shift mode.

Master Shift Mode

In master shift mode, the reference clock is the clock of the first DC-enabled slave in the network.

In phase 1, the algorithm shifts the sample time of the network nodes to align with the clock of the
first slave node. In that process, the EtherCAT Init block output value NetworkToSlaveClkDiff
decreases to near zero.

EtherCAT Distributed Clock Algorithm

Nth slave clock

3 2 1 0 Network to slave clk diff

First slave clock
(reference clock)

Master to network clk diff

Master stack clock

Sample time
(clock tick)

In phase 2, the algorithm shifts the sample time of the master stack running on the target computer
to align with the first slave node clock. In that process, the EtherCAT Init block output value
MasterToNetworkClkDiff decreases to near zero.

10-17

10 Model-Based EtherCAT Communications Support

Nth slave clock

First slave clock
(reference clock)

Master stack clock

10-18

|
0 0 0 0 Network to slave clk diff
|
|
|
|

Master to network clk diff

—_
S o T pe——
—_—_—e e e = (O} = = =——cccccsam=a=

Sample time
(clock tick)

Bus Shift Mode

In bus shift mode, the reference clock is the clock of the master stack running on the target
computer.

In phase 1, the algorithm shifts the sample time of the DC-enabled network nodes to align with the
clock of the first DC-enabled slave node. In that process, the value NetworkToSlaveClkDiff
decreases to near zero.

EtherCAT Distributed Clock Algorithm

Nth slave clock

3 2 1 0 Network to slave clk diff

First slave clock

Master to network clk diff

Master stack clock
(reference clock)

Sample time
(clock tick)

In phase 2, the algorithm shifts the sample time of the first DC-enabled slave node to align with the
clock of the master stack. In that process, the value MasterToNetworkClkDiff decreases to near
zero. The algorithm shifts the sample time of the other network nodes to stay aligned with the first
slave node clock. In that process, the value of NetworkToSlaveClkDiff first increases, then
decreases to near zero.

10-19

10 Model-Based EtherCAT Communications Support

Nth slave clock

First slave clock !

Master stack clock
(reference clock)

10-20

0 Network to slave clk diff
| |' i |'
Il I I l
| 1 |
| | |

1 0 0 Master to network clk diff
I 1 I
I 1 I
| 1 |
I 1 |
I 1 I
| 1 |
Sample time
(clock tick)
Limitations

If you configure EtherCAT distributed clocks in master shift mode, using the IEEE 1588 Sync
Execution block in the same model produces a build error. To include EtherCAT distributed clocks
and IEEE 1588 synchronized execution in the same model, use EtherCAT bus shift mode.

See Also
EtherCAT Init

More About
. “EtherCAT Init Block DC Error Values” on page 10-25

Fixed-Step Size Derivation

Fixed-Step Size Derivation

To configure the sample time for an EtherCAT model, set the fixed-step size for the entire model in
the model Configuration Parameters Solver pane. You can also specify the sample times for key
blocks.

During execution, the fixed-step size determines the cycle tick of the EtherCAT tasks and the sample
times of the other source blocks in the model. Subject to the fixed step size value, the block type
determines the sample time groups: a comparatively long sample time for the synchronous SDO
blocks and another, shorter sample time for the rest of the blocks. As a best practice, set the sample
time for the synchronous SDO blocks to a value at least three times that for the PDO blocks.

Using an EtherCAT network configurator, specify the EtherCAT task cycle tick based on the
requirements of the EtherCAT network. Specify the fixed-step size so that the GCD of the task cycle
tick and the block sample times is an integer multiple of the fixed-step size.

For example, assume that the fastest EtherCAT task rate is 50 Hz, for a corresponding cycle tick of 20
ms. The model block sample times, scaled to ms, are [20, 30, 40 50]. Then the FSS is:

FSS

min(gcd(20, [20, 30, 40, 50]))
FSS =

10

The software sends all PDO data updates at the fastest EtherCAT task cycle tick (20 ms), even if you
created multiple EtherCAT tasks running at different cycle ticks. The PDO read and write blocks run
at the cycle tick for the tasks containing the given EtherCAT variable.

If you know that the other source blocks have defined sample times, you can set Fixed-step size to
auto. If one or more block sample times are incompatible with the fixed sample time, there is an
error during system update. If you do not encounter an error, from the Simulink Editor, on the Debug
tab, from Information Overlays, click Sample Time Colors to reveal the block sample times.

10-21

10 Model-Based EtherCAT Communications Support

EtherCAT Protocol Mapping

10-22

EtherCAT supports several overlay protocols. Simulink Real-Time supports some of the protocols

directly, provides others with minimal support, and ignores some others.

Overlay Protocol Protocol Description |Support Type Means of Support
CANopen over Implements CAN Direct Model CoE using SDO
EtherCAT (CoE) functionality using upload and download
EtherCAT blocks.
Ethernet over EtherCAT |Provides EtherCAT Minimal Send wrapped EoE
(EoE) wrapper around messages between
Ethernet packets. separate slave devices.
EtherCAT acts as
network switch
File Access over Updates the EtherCAT |Ignored Update the EtherCAT
EtherCAT (FoE) board ROM slave ROM with
TwinCAT 3.
Functional Safety over |Sends asynchronous Ignored
EtherCAT (FSoE) ‘safety’ messages over
the network.
Servo over EtherCAT Wraps vendor-specific |Ignored

(SoE)

servo commands in a
common protocol.

EtherCAT Configurator Component Mapping

EtherCAT Configurator Component Mapping

The following table summarizes the mapping between third-party EtherCAT configurator components

and Simulink Real-Time blocks and block attributes. For more information, see the TwinCAT 3 or
Acontis EC-Engineer documentation.

EtherCAT Configurator Component

Simulink Real-Time

TwinCAT Acontis EC-Engineer Component
Cycle ticks (task step) Cycle time Sample time
Scalars and vectors Dimension Dimension
BitSize Byte size of type Type Size
Data Type, BitSize Data type Signal Type

EtherCAT device variable linked
to a variable in a task

All PDO variables included in
default task, with no linking
required.

EtherCAT PDO Receive Signal
Name

Device variables in Process
Image entity

EtherCAT PDO Receive or
EtherCAT PDO Transmit block

EtherCAT PDO Receive or
EtherCAT PDO Transmit block

See Also

EtherCAT PDO Receive | EtherCAT PDO Transmit

More About

. “EtherCAT Data Types” on page 10-24

10-23

10 Model-Based EtherCAT Communications Support

EtherCAT Data Types

The Simulink Real-Time EtherCAT blocks directly support the following EtherCAT data types. The
software maps other EtherCAT data types to a byte array. The byte array requires explicit conversion
using Byte Pack, Byte Unpack, or S-function blocks.

10-24

EtherCAT Data Type Data Type Size (bits) Converted Simulink Data
Type
bit 1 uint8
bit8 8 uint8
bitarr 8 (bit array) uint8
bitarrl6 16 (bit array) uint16
bitarr32 32 (bit array) uint32
BOOL 1 Boolean
int8 8 int8
int16 16 int16
int32 32 int32
int64 64 int64
uint8 8 uint8
uint16 16 uint16
uint32 32 uint32
uint64 64 uint64
float 32 real32 T
double 64 real T

EtherCAT Init Block DC Error Values

EtherCAT Init Block DC Error Values

The Simulink Real-Time EtherCAT Init block returns the following EtherCAT distributed clock (DC)
error values related to the master shift controller.

Error Value Description

1 (0x1) Initialization function not called or not successful
2 (0x2) Controller error — synchronization out of limit

3 (0x3) Not enough memory

4 (0x4) Hardware layer — (BSP) invalid

5 (0xD) Hardware layer — error modifying the timer

6 (0x6) Hardware layer — timer is not running

7 (0x7) Hardware layer — function is called on wrong CPU
8 (0x8) Invalid DC synchronization period length

9 (0x9) Error DCM Controller SetVal is too small

10 (0xA) Error DCM Controller — Drift between local timer and ref clock too high

10-25

10 Model-Based EtherCAT Communications Support

EtherCAT Error Codes

The Error output for the EtherCAT blocks returns an EtherCAT error code. These blocks include:

10-26

» EtherCAT Sync SSC/SoE Upl

oad

» EtherCAT Sync SSC/SoE Download
* EtherCAT Async SSC/SoE Upload
* EtherCAT Async SSC/SoE Download

» EtherCAT Sync SDO Upload

* EtherCAT Sync SDO Download
* EtherCAT Async SDO Upload
* EtherCAT Async SDO Download

* EtherCAT Set State

These six EtherCAT error codes are pre-pended onto the 'small number' error codes. These pre-
pended codes should never appear without the small number added. These pre-pended codes appear
in the upper 16 bits of the unsigned 32-bit error code and can be masked to display the small number
error code. The Decimal column in the table shows the base 10 value after the upper 16 bits are

masked.

Pre-Pended Codes Hexadecimal Error text

EC E NOERROR 0x00000000 No Error

EC E ERROR 0x98110000 Unspecific Error

EMRAS E ERROR 0x98110180 Unspecific RAS Error
The RAS (Remote Access Server) is not yet
implemented

DCM E ERROR 0x981201C0 Unspecific DCM Error
This class of error comes from the master shift
DC driver

EC TEXTBASE 0x0200 Unknown Text (Base)

EC ALSTATEBASE 0x0300 AL Status No Error

These are the 'small-number' Et

herCAT error codes.

Hexadecimal Decimal Error text

EC E ERROR+0x01 1 ERROR: Feature not supported
EC E ERROR+0x02 2 ERROR: Invalid index

EC E ERROR+0x03 3 ERROR: Invalid offset

EC E ERROR+0x04 4 ERROR: Cancel

EC E ERROR+0x05 5 ERROR: Invalid size

EC E ERROR+0x06 6 ERROR: Invalid data

EC E ERROR+0x07 7 ERROR: Not ready

EtherCAT Error Codes

Hexadecimal Decimal Error text

EC E ERROR+0x08 8 ERROR: Busy

EC E ERROR+0x09 9 ERROR: Cannot queue acyclic EtherCAT command
(MasterConfig.dwMaxQueuedEthFrames)

EC E ERROR+0x0A 10 ERROR: No memory left

EC E ERROR+0x0B 11 ERROR: Invalid parameter

EC E ERROR+0x0C 12 ERROR: Not found

EC E ERROR+0x0D 13 ERROR: Duplicate

EC E ERROR+0x0E 14 ERROR: Invalid state

EC E ERROR+0x0F 15 ERROR: Cannot add slave to timer list

EC E ERROR+0x10 16 ERROR: Time-out

EC E ERROR+0x11 17 ERROR: Open failed

EC E ERROR+0x12 18 ERROR: Send failed

EC E ERROR+0x13 19 ERROR: Insert mailbox error

EC E ERROR+0x14 20 ERROR: Invalid mailbox command

EC E ERROR+0x15 21 ERROR: Unknown mailbox protocol command

EC E ERROR+0x16 22 ERROR: Access denied

EC E ERROR+0x17 23 ERROR: Identification failed

EC E ERROR+0x1A 26 ERROR: Invalid product key

EC E ERROR+0x1B 27 ERROR: Wrong format of master XML file

EC E ERROR+0x1C 28 ERROR: Feature disabled

EC E ERROR+0x1D 29 ERROR: Shadow memory requested in wrong mode

EC E ERROR+0x1E 30 Bus configuration mismatch

EC E ERROR+0x1F 31 ERROR: Error in reading config file

EC E ERROR+0x20 32 ERROR: Configuration doesn't support SAFEOP and
OP requested state

EC E ERROR+0x21 33 ERROR: Cyclic commands are missing

EC E ERROR+0x22 34 ERROR: AL _STATUS register read missing in XML
file for at least one state

EC E ERROR+0x23 35 ERROR: Fatal internal McSm

EC E ERROR+0x24 36 ERROR: Slave error

EC E ERROR+0x25 37 ERROR: Frame lost, IDX mismatch

EC E ERROR+0x26 38 ERROR: At least one EtherCAT command is missing
in the received frame

EC E ERROR+0x28 40 ERROR: IOCTL
EC IOCTL DC LATCH REQ LTIMVALS not possible
in DC Latching auto read mode

EC E ERROR+0x29 41 ERROR: Auto increment address - increment

mismatch (slave missing)

10-27

10 Model-Based EtherCAT Communications Support

10-28

Hexadecimal Decimal Error text

EC E ERROR+0x2A 42 ERROR: Slave in invalid state, e.g. not in OP (API not
callable in this state

EC E ERROR+0x2B 43 ERROR: Station address lost or slave missing - FPRD
to AL STATUS failed

EC E ERROR+0x2C 44 ERROR: Too many cyclic commands in XML
configuration file. (Check
EC T MASTER CONFIG.dwMaxQueuedEthFrames

EC E ERROR+0x2D 45 ERROR: Ethernet link cable disconnected

EC E ERROR+0x2E 46 ERROR: Master core not accessible

EC E ERROR+0x2F 47 ERROR CoE: Mailbox send: working counter

EC E ERROR+0x31 49 ERROR: No mailbox support

EC E ERROR+0x32 50 ERROR CoE: Protocol not supported

EC E ERROR+0x33 51 ERROR EoE: Protocol not supported

EC E ERROR+0x34 52 ERROR FoE: Protocol not supported

EC E ERROR+0x35 53 ERROR SoE: Protocol not supported

EC E ERROR+0x36 54 ERROR VoE: Protocol not supported

CoE SDO command errors, can be returned by the 4 SDO/CoE blocks

EC E ERROR+0x40 64 ERROR SDO: Toggle bit not alternated.

EC E ERROR+0x41 65 ERROR SDO: SDO protocol time-out.

EC E ERROR+0x42 66 ERROR SDO: Client/server command specifier not
valid or unknown.

EC E ERROR+0x43 67 ERROR SDO: Invalid block size (block mode only.
EC E ERROR+0x44 68 ERROR SDO: Invalid sequence number (block mode
only.

EC E ERROR+0x45 69 ERROR SDO: CRC error (block mode only.

EC E ERROR+0x46 70 ERROR SDO: Out of memory.

EC E ERROR+0x47 71 ERROR SDO: Unsupported access to an object.

EC E ERROR+0x48 72 ERROR SDO: Attempt to read a write only object.

EC E ERROR+0x49 73 ERROR SDO: Attempt to write a read only object.

EC E ERROR+0x4A 74 ERROR SDO: Object does not exist in the object
dictionary.

EC E ERROR+0x4B 75 ERROR SDO: Object cannot be mapped to the PDO.

EC E ERROR+0x4C 76 ERROR SDO: Number and length of objects to be
mapped exceed PDO length

EC E ERROR+0x4D 77 ERROR SDO: General parameter incompatibility

EtherCAT Error Codes

Hexadecimal Decimal Error text

EC E ERROR+0x4E 78 ERROR SDO: General internal incompatibility in the
device.

EC E ERROR+0x4F 79 ERROR SDO: Access failed due to an hardware error.

EC E ERROR+0x50 80 ERROR SDO: Data type does not match, length of
service parameter does not match

EC E ERROR+0x51 81 ERROR SDO: Data type does not match, service
parameter too long

EC_E_ERROR+0x52 82 ERROR SDO: Data type does not match, service
parameter too short

EC E ERROR+0x53 83 ERROR SDO: Sub-index does not exist.

EC E ERROR+0x54 84 ERROR SDO: Write access - Parameter value out of
range

EC E ERROR+0x55 85 ERROR SDO: Write access - Parameter value out of
high limit

EC E ERROR+0x56 86 ERROR SDO: Write access - Parameter value out of
low limit

EC E ERROR+0x57 87 ERROR SDO: Maximum value is less than minimum
value.

EC E ERROR+0x58 88 ERROR SDO: General error

EC E ERROR+0x59 89 ERROR SDO: Unable to transfer or store data to the
application

EC E ERROR+0x5A 90 ERROR SDO: Unable to transfer or store data to the
application because of local control

EC E ERROR+0x5B 91 ERROR SDO: Unable to transfer or store data to the
application because of the present device state

EC E ERROR+0x5C 92 ERROR SDO: Dynamic generation of object dictionary
failed or missing object dictionary

EC E ERROR+0x5D 93 ERROR SDO: Unknown code.

FoE commands (not reachable with SLRT implementation)

EC E ERROR+0x60 96 ERROR FoE: Vendor specific FoE error
EC E ERROR+0x61 97 ERROR FoE: Not found

EC E ERROR+0x62 98 ERROR FoE: Access denied

EC E ERROR+0x63 99 ERROR FoE: Disk full

EC E ERROR+0x64 100 ERROR FoE: Illegal

EC E ERROR+0x65 101 ERROR FoE: Wrong packet number
EC E ERROR+0x66 102 ERROR FoE: Already exists

EC E ERROR+0x67 103 ERROR FoE: User missing

10-29

10 Model-Based EtherCAT Communications Support

Hexadecimal Decimal Error text

EC E ERROR+0x68 104 ERROR FoE: Bootstrap only
EC E ERROR+0x69 105 ERROR FoE: Not bootstrap
EC E ERROR+0x6A 106 ERROR FoE: No rights

EC E ERROR+0x6B 107 ERROR FoE: Program error

End of FoE specific errors

General errors again

EC E ERROR+0x70 112 ERROR: Master configuration not found

EC E ERROR+0x71 113 ERROR: Command error while EEPROM upload

EC E ERROR+0x72 114 ERROR: Command error while EEPROM download

EC E ERROR+0x73 115 ERROR: Cyclic command wrong size (too long)

EC E ERROR+0x74 116 ERROR: Invalid input offset in cyc cmd, please check
InputOffs

EC E ERROR+0x75 117 ERROR: Invalid output offset in cyc cmd, please
check OutputOffs

EC E ERROR+0x76 118 ERROR: Port Close failed

EC E ERROR+0x77 119 ERROR: Port Open failed

SoE command errors, can be returned by the 4 SSC/SoE blocks

EC E ERROR+0x78 120 ERROR SoE: Invalid access to element 0

EC E ERROR+0x79 121 ERROR SoE: Does not exist

EC E ERROR+0x7a 122 ERROR SoE: Invalid access to element 1

EC E ERROR+0x7b 123 ERROR SoE: Name does not exist

EC E ERROR+0x7c 124 ERROR SoE: Name undersize in transmission
EC E ERROR+0x7d 125 ERROR SoE: Name oversize in transmission

EC E ERROR+0x7e 126 ERROR SoE: Name unchangeable

EC E ERROR+0x7f 127 ERROR SoE: Name currently write-protected
EC E ERROR+0x80 128 ERROR SoE: Attribute undersize in transmission
EC E ERROR+0x81 129 ERROR SoE: Attribute oversize in transmission
EC E ERROR+0x82 130 ERROR SoE: Attribute unchangeable

EC E ERROR+0x83 131 ERROR SoE: Attribute currently write-protected

10-30

EtherCAT Error Codes

Hexadecimal Decimal Error text

EC E ERROR+0x84 132 ERROR SoE: Unit does not exist

EC E ERROR+0x85 133 ERROR SoE: Unit undersize in transmission

EC E ERROR+0x86 134 ERROR SoE: Unit oversize in transmission

EC E ERROR+0x87 135 ERROR SoE: Unit unchangeable

EC E ERROR+0x88 136 ERROR SoE: Unit currently write-protected

EC E ERROR+0x89 137 ERROR SoE: Minimum input value does not exist

EC E ERROR+0x8a 138 ERROR SoE: Minimum input value undersize in
transmission

EC E ERROR+0x8b 139 ERROR SoE: Minimum input value oversize in
transmission

EC E ERROR+0x8c 140 ERROR SoE: Minimum input value unchangeable

EC E ERROR+0x8d 141 ERROR SoE: Minimum input value currently write-
protected

EC E ERROR+0x8e 142 ERROR SoE: Maximum input value does not exist

EC E ERROR+0x8f 143 ERROR SoE: Maximum input value undersize in
transmission

EC E ERROR+0x90 144 ERROR SoE: Maximum input value oversize in
transmission

EC E ERROR+0x91 145 ERROR SoE: Maximum input value unchangeable

EC E ERROR+0x92 146 ERROR SoE: Maximum input value currently write-
protected

EC E ERROR+0x93 147 ERROR SoE: Data item does not exist

EC E ERROR+0x94 148 ERROR SoE: Data item undersize in transmission

EC E ERROR+0x95 149 ERROR SoE: Data item oversize in transmission

EC E ERROR+0x96 150 ERROR SoE: Data item unchangeable

EC E ERROR+0x97 151 ERROR SoE: Data item currently write-protected

EC E ERROR+0x98 152 ERROR SoE: Data item less than minimum input
value limit

EC E ERROR+0x99 153 ERROR SoE: Data item exceeds maximum input value
limit

EC E ERROR+0x9a 154 ERROR SoE: Data item is incorrect

EC E ERROR+0x9b 155 ERROR SoE: Data item is protected by password

EC E ERROR+0x9c 156 ERROR SoE: Data item temporary unchangeable (in
AT or MDT)

EC E ERROR+0x9d 157 ERROR SoE: Invalid indirect

EC E ERROR+0x9%e 158 ERROR SoE: Data item temporary unchangeable
(parameter or opmode...)

EC E ERROR+0x9f 159 ERROR SoE: Command already active

EC E ERROR+0x100 256 ERROR SoE: Command not interruptable

10-31

10 Model-Based EtherCAT Communications Support

10-32

Hexadecimal Decimal Error text

EC E ERROR+0x101 257 ERROR SoE: Command not available (in this phase)

EC E ERROR+0x102 258 ERROR SoE: Command not available (invalid
parameter...)

EC E ERROR+0x103 259 ERROR SoE: Response drive number not identical
with the requested drive number

EC E ERROR+0x104 260 ERROR SoE: Response IDN not identical with the
requested IDN

EC E ERROR+0x105 261 ERROR SoE: At least one fragment lost

EC E ERROR+0x106 262 ERROR SoE: RX buffer is full (ecat call with to small
data-buffer)

EC E ERROR+0x107 263 ERROR SoE: No data state.

EC E ERROR+0x108 264 ERROR SoE: No default value.

EC E ERROR+0x109 265 ERROR SoE: Default value transmission too long.
EC E ERROR+0x10a 266 ERROR SoE: Default value cannot be changed, read
only.

EC E ERROR+0x10b 267 ERROR SoE: Invalid drive number.
EC E ERROR+0x10c 268 ERROR SoE: General error
EC E ERROR+0x10d 269 ERROR SoE: No element addressed.

End of SoE specific error codes

EC E ERROR+0x10e 270 Command not executed. Slave is not present on Bus

EC E ERROR+0x10f 271 ERROR FoE: Protocol not supported in boot strap

EC E ERROR+0x110 272 ERROR: command error while EEPROM reload

EC E ERROR+0x111 273 ERROR: command error while Reset Slave Controller

EC E ERROR+0x11E 286 Bus configuration not detected, Topology changed

EC E ERROR+0x11F 287 ERROR EoE: Mailbox receive: working counter

EC E ERROR+0x120 288 ERROR FoE: Mailbox receive: working counter

EC E ERROR+0x121 289 ERROR SoE: mailbox receive: working counter

EC E ERROR+0x122 290 ERROR AoE: Mailbox receive: working counter

EC E ERROR+0x123 291 ERROR VoE: Mailbox receive: working counter

EC E ERROR+0x124 292 ERROR: EEPROM assignment failed

EC E ERROR+0x125 293 ERROR: Error mailbox received

EC E ERROR+0x126 294 ERROR: Redundancy line break

EC E ERROR+0x127 295 ERROR: Invalid EtherCAT cmd in cyclic frame with
redundancy

EC E ERROR+0x128 296 ERROR: <PreviousPort>-tag is missing!

EtherCAT Error Codes

Hexadecimal Decimal Error text

EC E ERROR+0x129 297 ERROR: DC is enabled and DC cyclic commands are
missing (e.g. access to 0x900)!

EC E ERROR+0x130 304 ERROR: DL Status Interrupt because of changed
Topology

EC E ERROR+0x131 305 ERROR: The Pass Through Server is not running!

EC E ERROR+0x132 306 ERROR: The ADS adapter (Pass Through Server) is
running!

EC E ERROR+0x133 307 ERROR: Could not start the Pass Through Server!

EC E ERROR+0x134 308 ERROR: The Pass Through Server could not bind the
IP address with a socket!

EC E ERROR+0x135 309 The Pass Through Server is running but not enabled

EC E ERROR+0x136 310 ERROR: This LinkLayer mode is not supported by the
Pass Through Server!

EC E ERROR+0x137 311 ERROR VoE: No VoE mailbox received!

EC E ERROR+0x138 312 ERROR: SYNC out unit of reference clock is disabled!

EC E ERROR+0x139 313 ERROR: Reference clock not found!

EC E ERROR+0x13B 315 ERROR: Mailbox command working counter error!

AoE is not supported by any SLRT blocks. These should never be returned.

EC E ERROR+0x13C 316 ERROR AoE: Protocol not supported

EC E ERROR+0x13D 317 ERROR AoE: Invalid AoE response received!
EC E ERROR+0x13E 318 ERROR AoE: Common AoE device error

EC E ERROR+0x13F 319 ERROR AoE: Service is not supported by server
EC E ERROR+0x140 320 ERROR AoE: Invalid index group

EC E ERROR+0x141 321 ERROR AoE: Invalid index offset

EC E ERROR+0x142 322 ERROR AoE: Reading/writing not permitted
EC E ERROR+0x143 323 ERROR AoE: Parameter size not correct

EC E ERROR+0x144 324 ERROR AoE: Invalid parameter value(s)

EC E ERROR+0x145 325 ERROR AoE: Device is not in a ready state
EC E ERROR+0x146 326 ERROR AoE: Device is busy

EC E ERROR+0x147 327 ERROR AoE: Invalid context

EC E ERROR+0x148 328 ERROR AoE: Out of memory

EC E ERROR+0x149 329 ERROR AoE: Invalid parameter value(s)

EC E ERROR+0x14A 330 ERROR AoE: Not found

EC E ERROR+0x14B 331 ERROR AoE: Syntax error in command or file
EC E ERROR+0x14C 332 ERROR AoE: Objects do not match

10-33

10 Model-Based EtherCAT Communications Support

10-34

Hexadecimal Decimal Error text

EC E ERROR+0x14D 333 ERROR AoE: Object already exists

EC E ERROR+0x14E 334 ERROR AoE: Symbol not found

EC E ERROR+0x14F 335 ERROR AoE: Symbol version invalid

EC E ERROR+0x150 336 ERROR AoE: Server is in invalid state

EC E ERROR+0x151 337 ERROR AoE: AdsTransMode not supported

EC E ERROR+0x152 338 ERROR AoE: Notification handle is invalid

EC E ERROR+0x153 339 ERROR AoE: Notification client not registered

EC E ERROR+0x154 340 ERROR AoE: No more notification handles

EC E ERROR+0x155 341 ERROR AoE: Size for watch to big

EC E ERROR+0x156 342 ERROR AoE: Device not initialized

EC E ERROR+0x157 343 ERROR AoE: Device has a timeout

EC E ERROR+0x158 344 ERROR AoE: Query interface failed

EC E ERROR+0x159 345 ERROR AoE: Wrong interface required

EC E ERROR+0x15A 346 ERROR AoE: Class ID is invalid

EC E ERROR+0x15B 347 ERROR AoE: Object ID is invalid

EC E ERROR+0x15C 348 ERROR AoE: Request is pending

EC E ERROR+0x15D 349 ERROR AoE: Request is aborted

EC E ERROR+0x15E 350 ERROR AoE: Signal warning

EC E ERROR+0x15F 351 ERROR AoE: Invalid array index

EC E ERROR+0x160 352 ERROR AoE: Symbol not active -> release handle and
try again

EC E ERROR+0x161 353 ERROR AoE: Access denied

EC E ERROR+0x162 354 ERROR AoE: Internal error

EC E ERROR+0x163 355 ERROR AoE: Target port not found

EC E ERROR+0x164 356 ERROR AoE: Target machine not found

EC E ERROR+0x165 357 ERROR AoE: Unknown command ID

EC E ERROR+0x166 358 ERROR AoE: Port not connected

EC E ERROR+0x167 359 ERROR AoE: Invalid AMS length

EC E ERROR+0x168 360 ERROR AoE: invalid AMS Net ID

EC E ERROR+0x169 361 ERROR AoE: Port disabled

EC E ERROR+0x16A 362 ERROR AoE: Port already connected

EC E ERROR+0x16B 363 ERROR AoE: Invalid AMS port!

EC E ERROR+0x16C 364 ERROR AoE: No memory!

EC E ERROR+0x16D 365 ERROR AoE: Vendor specific AoE device error

EC E ERROR+0x16E 366 ERROR: Invalid AoE NetID!

EtherCAT Error Codes

Hexadecimal

Decimal

Error text

End of AoE specific errors

Generic errors that indicate configuration problems, should never happen.

EC E ERROR+0x16F 367 ERROR: Maximum number of bus slave has been
exceeded!

EC E ERROR+0x170 368 ERROR Mailbox: Syntax of 6 octet Mailbox header is
wrong!

EC E ERROR+0x171 369 ERROR Mailbox: The Mailbox protocol is not
supported!

EC E ERROR+0x172 370 ERROR Mailbox: Field contains wrong value!

EC E ERROR+0x173 371 ERROR Mailbox: The service in the Mailbox protocol
is not supported!

EC E ERROR+0x174 372 ERROR Mailbox: The mailbox protocol header of the
mailbox protocol is wrong!

EC E ERROR+0x175 373 ERROR Mailbox: Length of received mailbox data is
too short!

EC E ERROR+0x176 374 ERROR Mailbox: Mailbox protocol can not be
processed because of limited resources!

EC E ERROR+0x177 375 ERROR Mailbox: The length of data is inconsistent!

EC E ERROR+0x178 376 ERROR: Slaves with DC configured are present on
bus before the reference clock!

EC E ERROR+0x179 377 ERROR: Data type conversion failed!

EC E ERROR+0x17A 378 ERROR FoE: File is bigger than max file size.

EC E ERROR+0x17B 379 ERROR: Line crossed.

EC E ERROR+0x17C 380 ERROR: Line crossed at slave \%s\", EtherCAT auto-
increment address=%d, station address=%d. Error at
port %d."

EC E ERROR+0x17D 381 ERROR: Socket disconnected

See Also

EtherCAT Async SSC/SoE Download | EtherCAT Async SSC/SoE Upload | EtherCAT Async SDO
Download | EtherCAT Async SDO Upload | EtherCAT Set State | EtherCAT Sync SSC/SoE Download |
EtherCAT Sync SSC/SoE Upload | EtherCAT Sync SDO Download | EtherCAT Sync SDO Upload

10-35

EtherCAT Blocks

11 EtherCAT Blocks

11-2

EtherCAT Init

Initialize EtherCAT Master node with data in the EtherCAT Network Information (ENI) file
Library: Simulink Real-Time / EtherCAT

EtherCAT Init

Metwork Device 0 Statuz

Description

The EtherCAT Init block initializes the EtherCAT master stack. The block specifies the Ethernet
interface cards in the network.

Before you use this block, create and save an EtherCAT Network Information (ENT) file. You export
the ENI file from the Beckhoff TwinCAT or the Acontis EC-Engineer. See “Configure EtherCAT
Network with TwinCAT 3” on page 10-7.

The Beckhoff ET9000 configurator is no longer supported.

To find the ENI file, click Browse. To read the ENI file and store the data in the EtherCAT Init block,
click Refresh Data.

The Simulink Real-Time software supports multiple EtherCAT networks. To use multiple networks:

* Use a different Ethernet card interface for each EtherCAT network.
e In the model, use one EtherCAT Init block for each network.
If you configure EtherCAT distributed clocks in master shift mode, using the IEEE 1588 Sync

Execution block in the same model produces a build error. To include EtherCAT distributed clocks
and IEEE 1588 synchronized execution in the same model, use EtherCAT bus shift mode.

Ports
Output

Status — Status information about the EtherCAT network
vector

The Status vector contains six values: ErrVal, MasterState, DCErrVal,
MasterToNetworkClkDiff, DCInitState, and NetworkToSlaveClkDiff.

* ErrVal — Error status:

¢ No error: 0
¢ Error: Value less than 0.

Because ErrVal shows the latest error status, the propagation of errors can hide the original
error. To find the original error, add an EtherCAT Get Notifications block and use
SimulinkRealTime.etherCAT.filterNotifications to print the status codes that the
EtherCAT stack transmits.

* MasterState — Operating state of the EtherCAT network:

EtherCAT Init

State Value Description

INIT 1 Initialization - The system finds slave devices and initializes
the communication controller.

PREOP 2 Preoperational — The system uses the communication
controller to exchange system-specific initialization data. In
this state, the network cannot transmit or receive signal data.

SAFEOP 4 Safe operational — The network is running and ready for full
operation. The master sends input data to the slave device.
The slave device output remains in a safe state.

oP 8 Operational — The network is in full operation. The master
sends input data to the slave device. The slave device
responds with output data.

DCErrVal — DC error status for the master shift controller:

* No DC Error for master shift controller: 0

* DC error for master shift controller: Value from “EtherCAT Init Block DC Error Values” on page
10-25.

When master shift controller mode is selected, the value 0 indicates successful clock distribution.
The DCErrVal does not apply when the distributed clock is disabled or when using the bus shift
controller mode.

MasterToNetworkClkDiff — Time difference, in nanoseconds, between the master stack clock
and the clock on the first slave device that has enabled DC.

DCInitState — Operating state of the distributed clock:

* DC not enabled, not initialized, or single EtherCAT DC slave: 0
* DC has been started and the EtherCAT DC slaves are in sync with each other: 1

NetworkToSlaveClkDiff — Time difference, in nanoseconds, between the clock on the first
EtherCAT slave device and the least closely locked clock on the remaining slave devices.

This value applies only to slave devices that have enabled DC. If only one device on the network
has enabled DC, this value is 0.

Data Types: int32

Parameters

Config file (ENI) — ENI file from the EtherCAT configurator

character vector

Specify the ENI file that you exported from the EtherCAT configurator.

You can specify the full path name or a partial path name. If you specify only the file name, the
software searches for the file in the current folder and on the MATLAB path. If more than one file
with that name exists on the path, MATLAB displays a message box where you select the file that you
want.

Clicking Browse inserts a full, editable path name.

11-3

11 EtherCAT Blocks

Programmatic Use
Block Parameter: config file

Device index — EtherCAT Ethernet card identifier
0-15

A unique integer in the range 0—15 that identifies the Ethernet card for an EtherCAT network.

For each EtherCAT network, the software generates a unique device index. The software inserts that
device index as Device index into the EtherCAT Init block that represents the network.

Programmatic Use
Block Parameter: device id

PCI bus — PCl bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: pci bus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.
Programmatic Use

Block Parameter: pci slot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: pci function

DC Tuning — Distributed clock initialization parameter
Large model (default) | Medium model | Small model

Enter the distributed clock initialization parameter, one of these values:
* Large model (default) — Sends 16, 000 timing initialization packets and allows 1 second of
settling time. Provides best initial synchronization between multiple slaves that have DC enabled.

* Medium model — Sends 8,000 timing initialization packets and allows 0. 3 seconds of settling
time. The model reaches operational state about a second earlier than it does with the Large
model setting.

* Small model — Sends 2,000 timing initialization packets and allows 0.2 seconds of settling
time. The model reaches operational state earlier than it does with the other settings.

Monitor device synchronization at the moment that the model enters the operational state. Check
that the devices are synchronized closely enough for your application.

Programmatic Use
Block Parameter: dctuning

11-4

EtherCAT Init

Enable Log and Debugging — Access to debugging and logging block parameters
off (default) | on

Selecting Enable Log and Debugging makes these parameters visible: Log link layer error
messages, Log master state changes, Log all state changes, Log base clock changes, Log
master config changes, and Target log filename.

Programmatic Use
Block Parameter: enaDebug

Log link layer error messages, Log master state changes, Log all state changes,
Log base clock changes, Log master config changes — Generate driver-level debug
messages

off (default) | on

To generate driver-level messages for driver and network debugging, select these check boxes.
For a high-speed model, turning on these options can cause CPU overloads.

To make these parameters visible, select Enable Log and Debugging.

Programmatic Use
Block Parameter: masterDbg

Target log filename — Name of log file on target computer
character vector

Enter the name of the log file on the target computer, in single quotes. The default value is
"c:\dbglog.txt"'.

If the target computer does not have a usable disk partition, the software does not create the log file.

To make these parameters visible, select Enable Log and Debugging.

Programmatic Use
Block Parameter: logFile

See Also
“EtherCAT Init Block DC Error Values” on page 10-25 | EtherCAT Get Notifications |
SimulinkRealTime.etherCAT.filterNotifications

Topics

“EtherCAT® Communication with Beckhoff® Analog 10 Slave Devices EL3062 and EL4002”
“EtherCAT® Communication with Beckhoff® Digital 10 Slave Devices EL1004 and EL2004”
“EtherCAT® Communication - Motor Velocity Control with Accelnet™ Drive”

“EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive and Beckhoff® Analog
10 Devices”

“Configure EtherCAT Network with TwinCAT 3” on page 10-7

“Configure EtherCAT Master Node Model” on page 10-11

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

11-5

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

1 1 EtherCAT Blocks

Introduced in R2010b

11-6

EtherCAT Get Notifications

EtherCAT Get Notifications

Collect notifications from the EtherCAT bus
Library: Simulink Real-Time / EtherCAT

EtherCAT Gat Natifications
Network Device 0 Valuzs

Description

Collects notifications from the EtherCAT stack and presents them to the output as a 21-element
vector of int32. At each time step, the block outputs what it has accumulated and clears itself for the
next time step.

The vector contains the number of notifications in element 1, followed by up to 20 notification codes.
The maximum number of notifications is 20. If the bus presents more than 20 notifications to the
output, the block discards the newest notifications and presents the first 20 that were received.

Ports
Output

Values — Self-descriptive 21-element vector containing EtherCAT notification codes
[Length 20 * Notification]

* Length (0 - 20) — the number of notifications in the vector.

* Notification — a composite of a notification type and a specific value. The types are:

+ + EC NOTIFY GENERIC [0x00000000 (0)] — Represents state changes, such as:0x00000001
(1) — EtherCAT operational state change.

* EC NOTIFY ERROR [0x00010000 (65536)] — Represents error states, such as 0x00010001
(65537):cyclic command: working counter error. Some describe changes in error
state.

« EC NOTIFY SCANBUS [0x00030000 (3*65536)] — Represents ScanBus error states, such as
0x00030002 (196610):ScanBus mismatch.

+ EC NOTIFY HOTCONNECT [0x00040000 (4*65536)] — Represents hot connect states, such as
0x00040005 (262149):Slave disappears.

To print the valid notification values and descriptions, call
SimulinkRealTime.etherCAT.filterNotifications without an argument.

Data Types: int32
Parameters

Device index — EtherCAT Ethernet card identifier
0 (default) | ©-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

11-7

11 EtherCAT Blocks

11-8

Programmatic Use
Block Parameter: device id

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. Use the EtherCAT task sample
time.

Programmatic Use
Block Parameter: sample time

Tips
To collect notifications:

Add the EtherCAT Get Notifications block to your model.

2 Connect the EtherCAT Get Notifications block to an Outport block. If possible, make this Outport
block Outport block 1. If the EtherCAT Get Notifications block is connected to the first Outport
block, the 21 notification signals appear in the first 21 columns tg.OutputLog matrix.
Otherwise, you must specify the columns with an offset.

3 Increase the value of Signal logging data buffer size in doubles by at least a factor of 100 in
the Simulink Real-Time Options pane. The EtherCAT Get Notifications block can quickly
increase the size of the output log.

4 To print the notifications for this model, pass the relevant 21 columns into the
SimulinkRealTime.etherCAT.filterNotifications function.

See Also
EtherCAT Init | SimulinkRealTime.etherCAT.filterNotifications

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2017a

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT PDO Receive

EtherCAT PDO Receive

Receive data from slave device represented by process data object
Library: Simulink Real-Time / EtherCAT

Uninitialized Block
Network Device 0

EtherCAT PDO Receive

Description
The EtherCAT PDO Receive block receives data from the EtherCAT slave device.

The block parameter dialog box has two sections, parameters and signal information. When you
specify an EtherCAT network and device variable name:

* The EtherCAT PDO Receive block mask is updated with the selected signal name.
* The signal information in the block parameter dialog box is updated to reflect the device variable.

Note If an error occurs while the software parses the configuration file specified in the EtherCAT Init
block, this block shows an error message.

Ports

Output

D — Data received from slave device
[double]

Vector of data received from the EtherCAT slave device.

Parameters

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Signal name — EtherCAT device variable name
character vector

From the list, select the EtherCAT device variable name.

The block parameter dialog box updates the read-only signal information to reflect the device variable
that you selected.

For a mapping of EtherCAT configurator components to Simulink Real-Time blocks and block
attributes, see “EtherCAT Configurator Component Mapping” on page 10-23.

11-9

11 EtherCAT Blocks

For a mapping of Simulink data types to EtherCAT data types, see “EtherCAT Data Types” on page
10-24.

Programmatic Use
Block Parameter: sig name

Signal Offset — Location in the process of signal data
integer

This property is read-only.

Location in the process image from which the data is available after the execution of the EtherCAT
Init block.

Programmatic Use
Block Parameter: sig offset

Signal Type — Data type for EtherCAT data
character vector

This property is read-only.

Simulink data type for the EtherCAT data.

Programmatic Use
Block Parameter: sig type

Type Size (bits) — Size of EtherCAT data type
integer

This property is read-only.

Size in bits of the EtherCAT data type.

Programmatic Use
Block Parameter: type size

Signal Dimension — Dimension of the signal
integer

This property is read-only.

The EtherCAT blocks support vectors and scalars (vectors of dimension 1).

Programmatic Use
Block Parameter: sig dim

Sample Time — Rate at which this block is executed
numeric

This property is read-only.

This rate is the execution rate of the EtherCAT task, as specified in the Beckhoff TwinCAT
configurator.

Programmatic Use
Block Parameter: sample time

11-10

EtherCAT PDO Receive

See Also
EtherCAT Init | EtherCAT PDO Transmit

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

11-11

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

11 EtherCAT Blocks

11-12

EtherCAT PDO Transmit

Send data to slave device represented by process data object
Library: Simulink Real-Time / EtherCAT

® Uniniialized Block
Network Device 0

EtherCAT PDO Transmit

Description

The EtherCAT PDO Transmit block transmits computed data to a particular variable in the EtherCAT
slave device.

The block parameter dialog box has two sections, parameters and signal information. When you
specify an EtherCAT network and device variable name:

* The EtherCAT PDO Receive block mask is updated with the selected signal name.
* The signal information in the block parameter dialog box is updated to reflect the device variable.

Note If an error occurs while the software parses the configuration file specified in the EtherCAT Init
block, this block shows an error message.

Ports
Input

D — Data to transmit to slave device
[double]

Vector of data to transmit to the EtherCAT slave device.

Parameters

Device index — EtherCAT Ethernet card identifier
0 (default) | ©-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Signal name — EtherCAT device variable name
character vector

From the list, select the EtherCAT device variable name.

The block parameter dialog box updates the read-only signal information to reflect the device variable
that you selected.

For a mapping of EtherCAT configurator components to Simulink Real-Time blocks and block
attributes, see “EtherCAT Configurator Component Mapping” on page 10-23.

EtherCAT PDO Transmit

For a mapping of Simulink data types to EtherCAT data types, see “EtherCAT Data Types” on page

10-24.

Programmatic Use
Block Parameter: sig name

Signal Offset — Location in the process of signal data

integer

This property is read-only.

Location in the process image from which the data is available after the execution of the EtherCAT

Init block.

Programmatic Use
Block Parameter: sig offset

Signal Type — Data type for EtherCAT data
character vector

This property is read-only.

Simulink data type for the EtherCAT data.

Programmatic Use
Block Parameter: sig type

Type Size (bits) — Size of EtherCAT data type
integer

This property is read-only.

Size in bits of the EtherCAT data type.

Programmatic Use
Block Parameter: type size

Signal Dimension — Dimension of the signal
integer

This property is read-only.

The EtherCAT blocks support vectors and scalars (vectors of dimension 1).

Programmatic Use
Block Parameter: sig dim

Sample Time — Rate at which this block is executed

numeric

This property is read-only.

This rate is the execution rate of the EtherCAT task, as specified in the Beckhoff TwinCAT

configurator.

Programmatic Use
Block Parameter: sample time

11-13

11 EtherCAT Blocks

See Also
EtherCAT Init | EtherCAT PDO Receive

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

11-14

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Get State

EtherCAT Get State

Get state of EtherCAT network
Library: Simulink Real-Time / EtherCAT

EtherCAT Get State
Network Device 0 State

Description

The EtherCAT Get State block returns the state of the EtherCAT network.

Ports

Output

State — State received from the EtherCAT network

1121418

State Value Description

INIT 1 Initialization - The system finds slave devices and initializes the
communication controller.

PREOP 2 Preoperational — The system uses the communication controller to
exchange system-specific initialization data. In this state, the
network cannot transmit or receive signal data.

SAFEOP 4 Safe operational — The network is running and ready for full
operation. The master sends input data to the slave device. The
slave device output remains in a safe state.

oP 8 Operational — The network is in full operation. The master sends
input data to the slave device. The slave device responds with
output data.

Parameters

Device index — EtherCAT Ethernet card identifier
0 (default) | ©-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

11-15

11 EtherCAT Blocks

Programmatic Use
Block Parameter: sample time

See Also
EtherCAT Init | EtherCAT Set State

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org

www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

11-16

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Set State

EtherCAT Set State

Set state of EtherCAT network
Library: Simulink Real-Time / EtherCAT

Description

The EtherCAT Set State block sets the state of the EtherCAT network to the value passed in through
the New State port.

Ports

Input

New State — State transmitted to the EtherCAT network

112|418

State Value Description

INIT 1 Initialization - The system finds slave devices and initializes the
communication controller.

PREOP 2 Preoperational — The system uses the communication controller to
exchange system-specific initialization data. In this state, the
network cannot transmit or receive signal data.

SAFEOP 4 Safe operational — The network is running and ready for full
operation. The master sends input data to the slave device. The
slave device output remains in a safe state.

oP 8 Operational — The network is in full operation. The master sends
input data to the slave device. The slave device responds with
output data.

Output

Prev State — Previous state of the network

1121418

This port transmits the value of the previous setting of the New State port.

Error — Report an EtherCAT state error

0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value.

Parameters

Device index — EtherCAT Ethernet card identifier

0 (default) | 0-15

11-17

11 EtherCAT Blocks

11-18

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Timeout — Time to wait for the network to change state
integer

Enter the number of seconds to wait for the EtherCAT network state to transition.

Set the timeout to 0 to return immediately. If you specify a nonzero Timeout value, in the
Configuration Parameters Solver pane, set the Fixed-step size parameter to a value larger than the
Timeout value.

Programmatic Use
Block Parameter: timeout

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sample time

See Also
EtherCAT Get State | EtherCAT Init

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Sync SDO Upload

EtherCAT Sync SDO Upload

Read data synchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

EtherCAT Sync SDOICGE Upload Data
MNatwork Device 0

0x0:0 Errar

Description

The EtherCAT Sync SDO Upload block selects a CANopen register by Index value in the specified
EtherCAT slave and sends a read request. The block then waits until it receives a response or until
the timeout period is over.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports
Output

Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device.

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 10-26.
Parameters

Index — Index of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal index of the CANopen register.

If you specify an invalid index, the block returns a nonzero value through the Error output.

Programmatic Use
Block Parameter: index

Subindex — Subindex of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns a nonzero value through the Error output.

Programmatic Use
Block Parameter: subIndex

11-19

11 EtherCAT Blocks

11-20

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int1l6 | uintl6 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

Enter a value of 1. EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig dim

Device index — EtherCAT Ethernet card identifier
0 (default) | ©-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Slave Name — Name of slave that contains CANopen register
character vector

From the list, select the name of the slave that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected slave

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sample time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

EtherCAT Sync SDO Upload

See Also
EtherCAT Init | EtherCAT Sync SDO Download

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

11-21

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

11 EtherCAT Blocks

11-22

EtherCAT Sync SDO Download

Transmit data synchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

EtherCAT Sync SDOICOE Download
Metwork Device 0

Description

The EtherCAT Sync SDO Upload block selects a CANopen register by Index value in the specified
EtherCAT slave and sends a write request. The block then waits until it receives a response or until
the timeout period is over.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports
Input

Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device.
Output

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 10-26.

Parameters

Index — Index of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal index of the CANopen register.

If you specify an invalid index, the block returns a nonzero value through the Error output.

Programmatic Use
Block Parameter: index

Subindex — Subindex of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns a nonzero value through the Error output.

EtherCAT Sync SDO Download

Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int1l6 | uintl6 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

Enter a value of 1. EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Slave Name — Name of slave that contains CANopen register
character vector

From the list, select the name of the slave that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected slave

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sample time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

11-23

11 EtherCAT Blocks

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Init | EtherCAT Sync SDO Upload

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org

www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

11-24

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Async SDO Upload

EtherCAT Async SDO Upload

Read data asynchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

EtharCAT Asyne SDO/CoE Upload D9t
Enable iatwork Device Status
00

Errar

Description

The EtherCAT Async SDO Upload block selects a CANopen register by Index value in the specified
EtherCAT slave and sends a read request. It then immediately returns whatever value was returned
from the device on an earlier call to the block.

Ports
Input

Enable — Enables block to upload data
int32

A value 0 disables uploads. A value greater than or equal to 1 enables the block to upload data.
A value 0 disables uploads. A value greater than or equal to 1 enables the block to upload data.
Output

Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device.

Status — Status of data transfer
0]1]2]3

Status of asynchronous data transfer:

* 0 — Mailbox transfer object idle, transfer not running

* 1 — Mailbox transfer object running, transfer not complete
» 2 — Transfer successfully executed

* 3 — Error occurred during transfer request

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 10-26.

Parameters

Index — Index of CANopen register
integer

11-25

11 EtherCAT Blocks

Specify the hexadecimal (for example, 0x7) or decimal index of the CANopen register.

If you specify an invalid index, the block returns the value 3 through the Status output.

Programmatic Use
Block Parameter: index

Subindex — Subindex of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns the value 3 through the Status output.

Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int16 | uint1l6 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns the value 3
through the Status output.

Programmatic Use
Block Parameter: sig type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

Enter a value of 1. EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Slave Name — Name of slave that contains CANopen register
character vector

From the list, select the name of the slave that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected slave

11-26

EtherCAT Async SDO Upload

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sample time

See Also
EtherCAT Async SDO Download | EtherCAT Init

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org

www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

11-27

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

11 EtherCAT Blocks

11-28

EtherCAT Async SDO Download

Transmit data asynchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description

The EtherCAT Async SDO Download block selects a CANopen register by Index value in the specified
EtherCAT slave and sends a write request. The block then immediately continues processing its input
data.

Ports
Input

Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device.

Enable — Enables block to download data
int32

A value 0 disables downloads. A value greater than or equal to 1 enables the block to download data.
Output

Status — Status of data transfer
01123

Status of asynchronous data transfer:

* 0 — Mailbox transfer object idle, transfer not running

* 1 — Mailbox transfer object running, transfer not complete
» 2 — Transfer successfully executed

* 3 — Error occurred during transfer request

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 10-26.

Parameters

Index — Index of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal index of the CANopen register.

EtherCAT Async SDO Download

If you specify an invalid index, the block returns the value 3 through the Status output.

Programmatic Use
Block Parameter: index

Subindex — Subindex of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns the value 3 through the Status output.

Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int16 | uintl6 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns the value 3
through the Status output.

Programmatic Use
Block Parameter: sig type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

Enter a value of 1. EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Slave Name — Name of slave that contains CANopen register
character vector

From the list, select the name of the slave that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected slave

Sample time — Sample time of block
-1 (default) | numeric

11-29

11 EtherCAT Blocks

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sample time

See Also
EtherCAT Async SDO Upload | EtherCAT Init

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

11-30

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Sync SSC/SoE Upload

EtherCAT Sync SSC/SoE Upload

Read data synchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

EtherCAT Sync SSGISoE Upload Data
Metwork Device 0

5-0-0000 Errar

Description

The EtherCAT Sync SSC/SoE Upload block provides synchronous SERCOS interface (SErial Real time
COmmunication Specification) over EtherCAT (SoE) upload. The block selects an IDN in the specified
slave and sends an upload (read) request. The block then waits until it receives a response to the
request or until the timeout period expires.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports

Output

Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device. The data signal has the type specified in Data
Type and vector dimension given by Dimension.

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error

codes, see “EtherCAT Error Codes” on page 10-26.

Parameters

IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the IDN as a
character vector that represents a 16-bit integer (according to IEC 61800 -7 -204), such as S-0-0150
or P-0-0150 with:

» First field (bit 15): S for Standard data, P for Product specific data

e Second field (bit 14 - 12): 0. .7 for Parameter set

* Third field (bit 11 - 0): 0. . 4095 for Data block number

Programmatic Use
Block Parameter: idn

11-31

11 EtherCAT Blocks

11-32

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks only apply for motor controllers. A single slave can support one or more drive or motor
channels. The drive number is the 0-based index of the drive or motor channel on this slave at which
this block is aimed. In SoE terminology, the drive is the logic that sends control signals to the motor.
Typically, this logic is a small processor inside the slave.

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint1l6 | int32 | uint32 | boolean

To identify the data type for the IDN, check the slave documentation for the description of the IDN
and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, check the slave documentation for the
description of the IDN and the number of data type values (the dimension) it uses. Enter a value of 1.
EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig dim

Device index — EtherCAT Ethernet card identifier
0 (default) | ©-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Slave Name — Name of slave that contains the IDN
character vector

From the list, select the name of the slave that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: slave name

Sample time — Sample time of block
-1 (default) | numeric

EtherCAT Sync SSC/SoE Upload

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited. The EtherCAT Sync SSC/SoE Download block and the EtherCAT Sync SSC/SoE
Uploadblock require at least three steps of the main EtherCAT processing task. Select a sample time
that is three times that main task sample time, or the model can overload and stop.

Programmatic Use
Block Parameter: sample time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Init | EtherCAT Sync SSC/SoE Download

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2018b

11-33

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

11 EtherCAT Blocks

11-34

EtherCAT Sync SSC/SoE Download

Transmit data synchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description

The EtherCAT Sync SSC/SoE Download block provides synchronous SERCOS interface (SErial Real
time COmmunication Specification) over EtherCAT (SoE) download. The block selects an IDN in the
specified slave and sends a download (write) request. The block then waits until it receives a
response to the request or until the timeout period expires.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports
Input

Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device. The data signal has the type specified in Data
Type and vector dimension given by Dimension.

Output

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 10-26.

Parameters

IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the IDN as a
character vector that represents a 16-bit integer (according to IEC 61800 -7 -204), such as S-0-0150
or P-0-0150 with:

» First field (bit 15): S for Standard data, P for Product specific data

* Second field (bit 14 - 12): 0. .7 for Parameter set

* Third field (bit 11 - 0): 0. .4095 for Data block number

EtherCAT Sync SSC/SoE Download

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks only apply for motor controllers. A single slave can support one or more drive or motor
channels. The drive number is the 0-based index of the drive or motor channel on this slave at which
this block is aimed. In SoE terminology, the drive is the logic that sends control signals to the motor.
Typically, this logic is a small processor inside the slave.

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uintl6 | int32 | uint32 | boolean

To identify the data type for the IDN, check the slave documentation for the description of the IDN
and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, check the slave documentation for the
description of the IDN and the number of data type values (the dimension) it uses. Enter a value of 1.
EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig dim

Device index — EtherCAT Ethernet card identifier
0 (default) | ©-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Slave Name — Name of slave that contains the IDN
character vector

From the list, select the name of the slave that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

11-35

11 EtherCAT Blocks

11-36

Programmatic Use
Block Parameter: slave name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited. The EtherCAT Sync SSC/SoE Download block and the EtherCAT Sync SSC/SoE
Uploadblock require at least three steps of the main EtherCAT processing task. Select a sample time
that is three times that main task sample time, or the model can overload and stop.

Programmatic Use
Block Parameter: sample time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Init | EtherCAT Sync SSC/SoE Upload

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2018b

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Async SSC/SoE Upload

EtherCAT Async SSC/SoE Upload

Read data asynchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

EtherCAT Asyne SSC/SoE Upload Data
Enaple | Network Device 0 Status

5-0-0000 Errar

Description

The EtherCAT Sync SSC/SoE Upload block provides asynchronous SERCOS interface (SErial Real
time COmmunication Specification) over EtherCAT (SoE) upload. The block selects an IDN in the
specified slave and sends an upload (read) request. After sending the request, the block immediately
returns whatever value was returned from the device on an earlier call to the block.

Ports
Input

Enable — Enables block to upload data
int32

A value 0 disables uploads. A value greater than or equal to 1 enables the block to upload data.
Output

Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device. The data signal has the type specified in Data
Type and vector dimension given by Dimension.

Status — Status of data transfer
01123

Status of asynchronous data transfer:

* 0 — Mailbox transfer object idle, transfer not running

* 1 — Mailbox transfer object running, transfer not complete
» 2 — Transfer successfully executed

* 3 — Error occurred during transfer request

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 10-26.

Parameters

IDN — Identification Number
character vector

11-37

11 EtherCAT Blocks

11-38

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the IDN as a
character vector that represents a 16-bit integer (according to IEC 61800 -7 -204), such as S-0-0150
or P-0-0150 with:

» First field (bit 15): S for Standard data, P for Product specific data

e Second field (bit 14 - 12): 0. .7 for Parameter set

* Third field (bit 11 - 0): 0. . 4095 for Data block number

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks only apply for motor controllers. A single slave can support one or more drive or motor
channels. The drive number is the 0-based index of the drive or motor channel on this slave at which
this block is aimed. In SoE terminology, the drive is the logic that sends control signals to the motor.
Typically, this logic is a small processor inside the slave.

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint1l6 | int32 | uint32 | boolean

To identify the data type for the IDN, check the slave documentation for the description of the IDN
and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, check the slave documentation for the
description of the IDN and the number of data type values (the dimension) it uses. Enter a value of 1.
EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig dim

Device index — EtherCAT Ethernet card identifier
0 (default) | ©-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

EtherCAT Async SSC/SoE Upload

Programmatic Use
Block Parameter: device id

Slave Name — Name of slave that contains the IDN
character vector

From the list, select the name of the slave that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: slave name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sample time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Async SSC/SoE Download | EtherCAT Init

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org

www.beckhoff.com
www.acontis.com/eng

Introduced in R2018b

11-39

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

11 EtherCAT Blocks

11-40

EtherCAT Async SSC/SoE Download

Transmit data asynchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description

The EtherCAT Sync SSC/SoE Download block provides asynchronous SERCOS interface (SErial Real
time COmmunication Specification) over EtherCAT (SoE) download. The block selects an IDN in the
specified slave and sends a download (write) request. After sending the request, the block
immediately continues processing its input data.

Ports
Input

Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device. The data signal has the type specified in Data
Type and vector dimension given by Dimension.

Enable — Enables block to download data
int32

The Enable input is level sensitive and the block remains enabled while the input is non-zero. To send
a value just once, you can enable the block with a single sample time pulse. There is a lag of
approximately three cycles after the pulse for the data to send.

A value 0 disables downloads. A value greater than or equal to 1 enables the block to download data.
Output

Status — Status of data transfer
01123

Status of asynchronous data transfer:
* 0 — Mailbox transfer object idle, transfer not running
* 1 — Mailbox transfer object running, transfer not complete

» 2 — Transfer successfully executed
* 3 — Error occurred during transfer request

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 10-26.

EtherCAT Async SSC/SoE Download

Parameters

IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the IDN as a
character vector that represents a 16-bit integer (according to IEC 61800 -7 -204), such as S-0-0150
or P-0-0150 with:

» First field (bit 15): S for Standard data, P for Product specific data

» Second field (bit 14 - 12): 0. .7 for Parameter set

e Third field (bit 11 - 0): 0. .4095 for Data block number

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks only apply for motor controllers. A single slave can support one or more drive or motor
channels. The drive number is the 0-based index of the drive or motor channel on this slave at which
this block is aimed. In SoE terminology, the drive is the logic that sends control signals to the motor.
Typically, this logic is a small processor inside the slave.

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint1l6 | int32 | uint32 | boolean

To identify the data type for the IDN, check the slave documentation for the description of the IDN
and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, check the slave documentation for the
description of the IDN and the number of data type values (the dimension) it uses. Enter a value of 1.
EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig dim

11-41

11 EtherCAT Blocks

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device id

Slave Name — Name of slave that contains the IDN
character vector

From the list, select the name of the slave that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: slave name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. - 1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sample time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Async SSC/SoE Upload | EtherCAT Init

Topics
“EtherCAT Configurator Component Mapping” on page 10-23
“EtherCAT Data Types” on page 10-24

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2018b

11-42

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

TCP, UDP

43

Real-Time TCP Communication Support

« “TCP Transport Protocol” on page 12-2
* “Troubleshoot TCP Block Configuration” on page 12-4

12 Real-Time TCP Communication Support

TCP Transport Protocol

12-2

The Simulink Real-Time software supports communication from the target computer to other systems
or devices using Transmission Control Protocol (TCP). TCP provides ordered and error-checked
packet transport.

TCP is a transport protocol layered on top of the Internet Protocol (IP). It is commonly known as
TCP/IP.

* Stream — TCP is a stream-oriented protocol.

TCP is a long stream of data that flows from one end of the network to the other. Another long
stream of data flows in the other direction. The TCP stack at the transmitting end is responsible
for breaking the stream of data into packets and sending those packets. The stack at the receiving
end is responsible for reassembling the packets into a data stream using information in the packet
headers.

* Connection — TCP is a connection-based protocol.

In TCP, the two ends of the communication link must be connected throughout the communication.
* Error Detection — TCP detects errors.

TCP packets contain a unique sequence number. The starting sequence number is communicated
to the other side at the beginning of communication. The receiver acknowledges each packet, and
the acknowledgment contains the sequence number so that the sender knows which packet was
acknowledged. Therefore, packets lost on the way can be retransmitted. The sender knows that
they did not reach their destination because the sender did not receive an acknowledgment. The
receiver can reassemble in order packets that arrive out of sequence. Timeouts can be
established, because the sender knows from the first few packets how long it takes to transmit a
packet and receive its acknowledgment.

TCP communication is like a telephone conversation. A continuous connection is required, and two-
way streaming data (the words spoken by each party) are exchanged.

When describing TCP, the words Reliable and Unreliable have a specific meaning.

Note Reliable means that if a packet is not acknowledged, it is retransmitted. It does not mean that
the protocol always succeeds.

Unreliable means that if too many packets are not acknowledged, the protocol can time out. It does
not mean that the protocol packets usually fail to arrive.

You can construct a packet from Simulink data types such as double, int8, int32, uint8, or a
combination of these data types. The Simulink Real-Time block library provides blocks for combining
various signals into one packet (packing), and then transmitting it. It also provides blocks for splitting
a packet (unpacking) into its component signals that can then be used in a Simulink model.

The preceding discussion applies to both communication with a shared Ethernet board and
communication with a dedicated Ethernet board. Consider adding a dedicated Ethernet board for
enhanced performance over communication using a shared Ethernet board. Shared TCP
communication shares bandwidth with the link between the development and target computers.

TCP Transport Protocol

See Also

Byte Unpacking | Byte Packing | Byte Reversal/Change Endianess | TCP Receive | TCP Client
Configure | TCP Send | TCP Server Configure

External Websites
. www.ietf.org/rfc/rfc793.txt

12-3

https://www.ietf.org/rfc/rfc793.txt

12 Real-Time TCP Communication Support

Troubleshoot TCP Block Configuration

12-4

I want to resolve TCP block configuration problems.

What This Issue Means

TCP is a transport protocol layered on top of the Internet Protocol (IP). It is commonly known as
TCP/IP. If the block configuration or signal connections for TCP blocks do not follow best practices,
the blocks generate errors. Apply these guidelines:

* TCP Blocks Run Only on Target Computer

The Simulink Real-Time TCP blocks function only when executed on the target computer. When
simulated on the development computer, they do nothing.

* Excluded Ports When Using Host-Target Connection

When you select the Use host-target connection parameter in the TCP configure blocks, you
cannot use ports 22222 and 22223. Simulink Real-Time reserves these ports for its own use.

* Order of Operation of TCP Blocks

The real-time application must execute the TCP configure blocks before it executes the TCP Send
or TCP Receive blocks.

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.

Try This Workaround

You can use a dedicated Ethernet card for TCP communication while using another card for
communicating between the development and target computers. If there is a duplicate subnet
calculated in a TCP block, you can get the following error during model initialization:

The subnet in this block is the same as or is a subset of the subnet
calculated in ''block''. The block calculates the
subnet by ANDing the IP address bitwise with the subnet mask.

Check the IP address and subnet you assigned to the target computer Ethernet card in the
configuration block. The TCP implementation requires that the two communication channels use
separate subnets.

The block calculates the subnet by ANDing the IP address bitwise with the subnet mask for each
card. For example, these specifications result in the same subnet for both cards.

E1l (development-target): IP address: 192.168.0.25
Subnet mask: 255.255.255.0

Calculated Subnet: 192.168.0.0

E2 (TCP): IP address: 192.168.0.26
Subnet mask: 255.255.255.0

Calculated Subnet: 192.168.0.0

Try a configuration such as the following:

Troubleshoot TCP Block Configuration

E1l (development-target): IP address: 192.168.0.25
Subnet mask: 255.255.255.0

Calculated Subnet: 192.168.0.0

E2 (TCP): IP address: 192.168.0.26
Subnet mask: 255.255.255.2

Calculated Subnet: 192.168.0.2

In some networks, the development computer must also be in the subnet where the TCP
communication occurs. You can either add a second network card to the development computer or
provide a gateway device to create a dedicated network for TCP communication.

See Also
TCP Client | TCP Client Configure | TCP Receive | TCP Send | TCP Server | TCP Server Configure

More About
. “TCP/IP and UDP Interface” (Instrument Control Toolbox)
. “TCP/IP Communication” (MATLAB)

12-5

TCP Blocks

13 TcPBlocks

13-2

IP Config

Initialize Ethernet network interface to use for IP communication in real-time applications
Library: Simulink Real-Time / TCP

Configurs IP

Description

The IP Config block configures a dedicated Ethernet network for real-time operation.

The combination of Local IP Address and Subnet mask must be unique across all Ethernet cards in
the target computer, including the card for communicating between the development and target
computers. Distinguish cards by specifying a different subnet for each. The subnet is the IP address
masked by the subnet mask.

Parameters

Local IP Address — IP address for the Ethernet interface
X.X.X.X

Enter the IP address for the dedicated Ethernet board.

The addresses 0.0.0.0 and 255.255.255. 255 are invalid IP addresses.

Programmatic Use
Block Parameter: ipAdd

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x. x.x.x

Mask that designates a logical subdivision of a network.

Programmatic Use
Block Parameter: snMask

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

The gateway must be within the network.

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.

Programmatic Use
Block Parameter: gwAdd

PCI bus — PCI bus number of Ethernet card
0 (default) | 0-31

Enter the PCI bus number for the Ethernet card.

IP Config

Programmatic Use
Block Parameter: PciBus

PCI slot — PCI slot number of Ethernet card
0 (default) | 0-31

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

See Also
getPCIInfo

Topics

“Troubleshoot TCP Block Configuration” on page 12-4
“Troubleshoot UDP Block Configuration” on page 14-11

Introduced in R2017a

13-3

13 TcPBlocks

13-4

TCP Client

Configure TCP client
Library: Simulink Real-Time / TCP
Description

Configure a TCP client application. You must have already configured a network interface for IP by
the IP Config block.

Ports
Input

Enable — Connect block to remote Ethernet device
integer

If Enable is greater than zero, the block connects to the Ethernet device. Otherwise, the block does
not connect.

Output

Status — Device returns a status of not connected or connected
01

The status value is one of:

* 0 — Not connected
e 1 — Connected

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.

Parameters

Client IP address — IP address of the client device that is being configured
X. X. X. X

If you are using the Ethernet connection between the development and target computers, this value
must match the value of the TcpIpTargetAddress target setting. If you are using a dedicated
Ethernet card, this value must match the Local IP Address parameter in the IP Config block for the
network interface.

The addresses 0.0.0.0 and 255.255.255. 255 are invalid IP addresses.

Programmatic Use
Block Parameter: clientAdd

TCP Client

Client local port — IP port of the client device that is being configured
1-65535

The combination of Client IP address and Client local port must be unique.

When you select the Use host-target connection parameter in the TCP configure blocks, you
cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves these ports for its own
use.

Programmatic Use
Block Parameter: clientPort

Remote server IP address — IP address of the server device
X.X.X. X

Enter the IP address of the server to which you want to connect the client.

The addresses 0.0.0.0 and 255.255.255. 255 are invalid IP addresses.

Programmatic Use
Block Parameter: remoteAdd

Remote server port — Port number of the server device
1-65535

Enter the port number of the server to which you want to connect the client.

When you select the Use host-target connection parameter in the TCP configure blocks, you
cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves these ports for its own
use.

Programmatic Use
Block Parameter: remotePort

See Also
IP Config | Target Settings

Topics
“Troubleshoot TCP Block Configuration” on page 12-4

External Websites
www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

13-5

https://www.ietf.org/rfc/rfc793.txt

13 TcPBlocks

13-6

TCP Client Configure

Configure a TCP client application that uses the specified Ethernet interface
Library: Simulink Real-Time / TCP

TCP Client Configure
Enable Client: :25001 Status
Server. 8001
1 bus: slot: function:0

Description

Configure a TCP client application and initialize a network interface for the application.

The combination of Client IP Address and Subnet mask must be unique across all Ethernet cards
in the target computer, including the card for communicating between the development and target
computers. Distinguish cards by specifying a different subnet for each. The subnet is the IP address

masked by the subnet mask.

The Simulink Real-Time TCP blocks function only when executed on the target computer. When
simulated on the development computer, they do nothing.

Ports
Input

Enable — Connect block to remote Ethernet device
integer

If Enable is greater than zero, the block connects to the Ethernet device. Otherwise, the block does
not connect.

Output

Status — Device returns a status of not connected or connected
0]1

The status value is one of:

* 0 — Not connected
* 1 — Connected

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.

Parameters

Use host-target connection — Use Ethernet connection between development and
target computers
'off' (default) | 'on'

TCP Client Configure

Dependency

When you select this parameter, it deactivates the Client IP address, Subnet mask, PCI bus, and
PCI slot parameters and excludes the ports 22222 and 22223 from use by TCP.

Programmatic Use
Block Parameter: useHostTargetConn

Client IP address — IP address of the client device that is being configured
X. X. X X

The addresses 0.0.0.0 and 255.255.255. 255 are invalid IP addresses.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: clientAddress

Client local port — IP port of the client device that is being configured
1-65535

The combination of Client IP address and Client local port must be unique.

When you select the Use host-target connection parameter in the TCP configure blocks, you
cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves these ports for its own
use.

Programmatic Use
Block Parameter: clientPort

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x.x.x.x

Mask that designates a logical subdivision of a network.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: SubnetMask

Remote server IP address — IP address of the server device
X.X.X. X

Enter the IP address of the server to which you want to connect the client.

The addresses 0.0.0.0 and 255.255.255. 255 are invalid IP addresses.

Programmatic Use
Block Parameter: remoteAddress

Remote server port — Port number of the server device
1-65535

Enter the port number of the server to which you want to connect the client.

When you select the Use host-target connection parameter in the TCP configure blocks, you
cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves these ports for its own
use.

13-7

13 TcPBlocks

13-8

Programmatic Use
Block Parameter: remotePort

PCI bus — PCI bus number of dedicated Ethernet card
0 (default) | 0-31

Enter the PCI bus number for the dedicated Ethernet card.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: PciBus

Slot — PCI slot number of dedicated Ethernet card
0 (default) | 0-31

Enter the PCI slot number for the dedicated Ethernet card.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: PciSlot

Function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: PciFunction

See Also
TCP Receive | TCP Send | getPCIInfo

Topics
“Troubleshoot TCP Block Configuration” on page 12-4

External Websites
www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

https://www.ietf.org/rfc/rfc793.txt

TCP Receive

TCP Receive

Receive data over TCP network from a remote device
Library: Simulink Real-Time / TCP

Description

Receive data sent from a remote client device to a server application on a target computer.

Ports
Input

Enable — Allow data reception
integer

When Enable > 0, the block attempts to receive data sent to the remote device.

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.

Output

Data — Data that is received from the remote client
vector

The parameter Receive width determines the maximum size of the data vector.

Data Types: uint8

Length — Actual size of data vector
double

To test whether the number of data items exceeds the width of the data output port, use this value.

Parameters

Receive using — List of IP address and port pairs
X.X.X.X:y

This property is read-only.

The block receives the list of IP address and port pairs from the TCP configuration blocks in the
model.

Programmatic Use
Block Parameter: socketAddress, socketPort

Receive width — Maximum expected length of data vector
1-65504

13-9

13 TcPBlocks

Maximum number of uint8 values that the block expects to receive from the client device.

Programmatic Use
Block Parameter: rcvWidth

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sampleTime

See Also
TCP Client Configure | TCP Server Configure

Topics
“Troubleshoot TCP Block Configuration” on page 12-4

External Websites
www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

13-10

https://www.ietf.org/rfc/rfc793.txt

TCP Send

TCP Send

Send data over TCP network to a remote device
Library: Simulink Real-Time / TCP

Enable

Send TOP packsts using
Data. Client: 25001 Status

Length

Description

Send data from a server application on a target computer to a remote client device.

Ports
Input

Enable — Allow data transmission
integer

When Enable > 0, the block attempts to transmit data to the remote device.

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.

Data — Data to transmit over the TCP network
vector

Vector of length Length to transmit to the client device.

Data Types: uint8

Length — Length of data vector
double

Number of uint8 values to transmit to the client device.
Output

Status — Number of bytes sent
double

Returns the number of uint8 values transmitted to the client device.

Parameters

Send using — List of IP address and port pairs
X.X.X. X!y

This property is read-only.

The block receives the list of IP address and port pairs from the TCP configuration blocks in the
model.

13-11

13 TcPBlocks

Programmatic Use
Block Parameter: socketAddress, socketPort

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sampleTime

See Also
TCP Client Configure | TCP Server Configure

Topics
“Troubleshoot TCP Block Configuration” on page 12-4

External Websites
www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

13-12

https://www.ietf.org/rfc/rfc793.txt

TCP Server

TCP Server

Configure TCP server application
Library: Simulink Real-Time / TCP

Connect Status

Description

Configure a TCP server application. This block assumes that a network interface has been configured
for IP by the IP Config block.

Ports
Input

Enable — Connect block to remote Ethernet device
integer

If Enable is greater than zero, the block connects to the Ethernet device. Otherwise, the block does
not connect.

Output

Status — Device returns a status of not connected or connected
01

The status value is one of:

* 0 — Not connected
* 1 — Connected

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.

Parameters

Server IP address — IP address of the server device that is being configured
X. X. X. X

If you are using the Ethernet connection between the development and target computers, this value
must match the value of the TcpIpTargetAddress target setting. If you are using a dedicated
Ethernet card, this value must match the Local IP Address parameter in the IP Config block for the
network interface.

The addresses 0.0.0.0 and 255.255.255. 255 are invalid IP addresses.

Programmatic Use
Block Parameter: serverAddress

13-13

13 TcPBlocks

Server port — IP port of the server device that is being configured
1-65535

The combination of Server IP address and Server port must be unique.

When you select the Use host-target connection parameter in the TCP configure blocks, you
cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves these ports for its own
use.

Programmatic Use
Block Parameter: serverPort

See Also
[P Config | Target Settings

Topics
“Troubleshoot TCP Block Configuration” on page 12-4

External Websites
www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

13-14

https://www.ietf.org/rfc/rfc793.txt

TCP Server Configure

TCP Server Configure

Configure TCP server application that uses the specified Ethernet interface
Library: Simulink Real-Time / TCP

TCP Server Configure

nnnnnnnnnnn

Description
Configure a TCP server application and initialize a network interface for the application.

The combination of Server IP Address and Subnet mask must be unique across all Ethernet cards
in the target computer, including the card for communicating between the development and target
computers. Distinguish cards by specifying a different subnet for each. The subnet is the IP address
masked by the subnet mask.

The Simulink Real-Time TCP blocks function only when executed on the target computer. When
simulated on the development computer, they do nothing.

Ports
Input

Enable — Connect block to remote Ethernet device
integer

If Enable is greater than zero, the block connects to the Ethernet device. Otherwise, the block does
not connect.

Output

Status — Device returns a status of not connected or connected
0]1

The status value is one of:

* 0 — Not connected
e 1 — Connected

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.
Parameters

Use host-target connection — Use Ethernet connection between development and
target computers
"off' (default) | 'on'

Selecting the Use host-target connection parameter disables the Server IP address, Subnet
mask, PCI bus, and PCI slot parameters and excludes the ports 22222 and 22223 from use by TCP.

13-15

13 TcPBlocks

13-16

Programmatic Use
Block Parameter: useHostTargetConn

Server IP address — IP address of the server device that is being configured
X. X. X. X

The addresses 0.0.0.0 and 255.255.255. 255 are invalid IP addresses.

To enable this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: serverAddress

Server port — IP port of the server device that is being configured
1-65535

The combination of Server IP address and Server port must be unique.

When you select the Use host-target connection parameter in the TCP configure blocks, you
cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves these ports for its own
use.

Programmatic Use
Block Parameter: serverPort

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x. x.x.x

Mask that designates a logical subdivision of a network.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: SubnetMask

PCI bus — PCI bus number of dedicated Ethernet card
0 (default) | 0-31

Enter the PCI bus number for the dedicated Ethernet card.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: PciBus

Slot — PCI slot number of dedicated Ethernet card
0 (default) | 0-31

Enter the PCI slot number for the dedicated Ethernet card.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: PciSlot

Function — PCI function number of Ethernet card
0 (default) | integer

TCP Server Configure

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: PciFunction

See Also
TCP Receive | TCP Send | getPCIInfo

Topics
“Troubleshoot TCP Block Configuration” on page 12-4

External Websites
www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

13-17

https://www.ietf.org/rfc/rfc793.txt

Real-Time UDP Communication Support

« “UDP Transport Protocol” on page 14-2

» “UDP Data Exchange with Shared Ethernet Board” on page 14-4
* “UDP Communication Setup” on page 14-9

* “UDP and Variable-Size Signals” on page 14-10

» “Troubleshoot UDP Block Configuration” on page 14-11

14 Real-Time UDP Communication Support

UDP Transport Protocol

14-2

The Simulink Real-Time software supports communication from the target computer to other systems
or devices with User Datagram Protocol (UDP) packets. UDP is a transport protocol that provides a
direct method to send and receive packets over an IP network. UDP uses this direct method at the
expense of reliability by limiting error checking and recovery.

UDP is a transport protocol layered on top of the Internet Protocol (IP). It is commonly known as
UDP/IP.

» Packet — UDP is a packet-oriented protocol. You divide the data into packets and the protocol
sends them to the receiver.

* Connectionless — UDP is a connectionless protocol. The protocol sends a packet to the receiver
without checking to see if the receiver is ready to receive a packet. If the receiver is not ready, the
packet is lost.

* No Error Detection— UDP does not support error detection. The protocol sends packets and does
not track them. If packets arrive out of sequence, or are lost in transmission, the receiving end (or
the sending end) does not know.

UDP is like sending letters by mail, without a return address. If the other party is not found, or the
letter is lost in transit, it is discarded.

When describing UDP, the words reliable and unreliable have a specific meaning.

* Reliable means that the protocol is not guaranteed to succeed. It does not mean that the protocol
always succeeds.

* Unreliable means that protocol packets can fail to arrive without the system detecting that the
packets did not arrive. It does not mean that the protocol packets usually fail to arrive.

UDP continues to receive packets as long as the receiver is active and processes data as quickly as it
arrives.

UDP is a commonly used transport layer because of its lightweight nature. When used from Simulink
Real-Time, UDP gives the real-time application a good chance of succeeding in real-time execution.
Also, the datagram nature of UDP is optimal for sending samples of data from the real-time
application generated by the Simulink Coder software. If the real-time application cannot process the
data as quickly as it arrives, only the most recent packet is used. The earlier packets are ignored.

You can construct a packet from Simulink data types such as double, int8, int32, uint8, or a
combination of these data types. The Simulink Real-Time block library provides blocks for combining
various signals into one packet (packing), and then transmitting it. It also provides blocks for splitting
a packet (unpacking) into its component signals that can then be used in a Simulink model.

The preceding information applies to communication with a shared Ethernet board and
communication with a dedicated Ethernet board. Consider adding a dedicated Ethernet board for
enhanced performance over communication using a shared Ethernet board. Shared UDP
communication shares bandwidth with the link between the development and target computers.

See Also

Byte Unpacking | Byte Packing | Byte Reversal/Change Endianess | UDP Configure | UDP Receive
UDP Send

UDP Transport Protocol

More About
. “Target to Host Transmission using UDP”
. “Target to Target Transmission using UDP”

. “UDP Communication Setup” on page 14-9
. “UDP and Variable-Size Signals” on page 14-10

14-3

14 Real-Time UDP Communication Support

UDP Data Exchange with Shared Ethernet Board

14-4

In this section...

“Data Transferred” on page 14-4
“Set Up udpsendreceiveA”’ on page 14-5

“Set Up udpsendreceiveB” on page 14-6

This example shows how to set up two-way data exchange with an Ethernet board that is shared with
the connection between the development and target computers. Using this configuration, you can
communicate between two Simulink Real-Time systems, between the Simulink Real-Time and
Simulink products, or between two Simulink models. When one or both of the systems are running as
a non-real-time Simulink model, be sure to set the sample time.

This example does not require a UDP Configure block because the example uses the connection
between the development and target computers. To perform real-time UDP data transfer with a
dedicated Ethernet board, see “Target to Target Transmission using UDP”.

The example models are named udpsendreceiveA and udpsendreceiveB. Replace the port and IP
address examples with ports and addresses as required by your network.

Data Transferred

The models transfer two different data sets between them, one data set from udpsendreceiveA to
udpsendreceiveB and another data set in the opposite direction.

For this example, the inputs are generated with Simulink Constant blocks that use the MATLAB
random number function (rand). The Simulink Coder software uses this function during code
generation to generate random numbers. To generate the vector of uint8 (3x3), use the MATLAB
function:

uint8(255 * rand(3,3))

because 255 is the maximum value for an unsigned 8-bit integer. The other values are generated
similarly.

udpsendreceiveA to udpsendreceiveB

The UDP data send is 75 bytes wide. The data to transfer is in the following formats.

* [3 3] of uint8 (9 bytes)
e [1 1] of uint16 (2 bytes)
* [2 4] of double (64 bytes)

When packed, the data is aligned on 1-byte boundaries.
udpsendreceiveB to udpsendreceiveA

The UDP data to be sent is 79 bytes wide. The data to transfer is in the following formats.

* [4 1] of single (16 bytes)
* [2 2] of double (32 bytes)

UDP Data Exchange with Shared Ethernet Board

* [2 2] of uint32 (16 bytes)
¢ [5 3] of int8 (15 bytes)

When packed, the data is aligned on 2-byte boundaries. A zero-valued pad byte is added during
packing.

Set Up udpsendreceiveA
The final udpsendreceiveA is shown in the figure.

The tables list the parameters for the send and receive sides of the model.

i] uinth {3u3)
uintB{255*rand(3.3)) | >
1
. nt16
uint16{65536"rand-32768) » Pack — # Data
wnte (30} Send UDP packets
2 Using host-target connection
i To: 192.168.0.2:25000
doubla (2xd) # Length
(2*rand(2,4)-1)*10"[rand"600-300) >
= Width Sond
Byte Packing
single (4) 5
Terminatori
diouble (262) 5
wntE (80} i
Data { | Unpack Terminator2
Receive UDF packets .)
Using host-target connection uint32 (2xZ)
From: 192.168.0.1 doubla =
Length Terminatard
Recaive intd (Gx3) _—
Terminatord
Terminat
arminator Byte Unpacking
udpsendreceiveA Send Side
Block Parameter Value
Byte Packing Output port (packed) data |'uint8'

type
Input port (unpacked) data |{'uint8', 'uintl6', 'double'}
types (cell array)

Byte alignment 1

UDP Send Local IP address Use host-target connection
Local port -1 (autoselect)
To IP address 192.168.0.2

14-5

14 Real-Time UDP Communication Support

14-6

Block Parameter Value
To port 25000
Sample time (-1 for 0.01
inherited)

* The Length input port receives the output of a Width block that calculates the width of the signal
connected to the Data port.

» The Byte Packing block settings match the Byte Unpacking block of udpsendreceiveB.

udpsendreceiveA Receive Side

Block Parameter Value
UDP Receive Local IP address Use host-target connection
Local port 25000
Receive width 80
Receive from any source off
From IP address 192.168.0.1
Sample time (-1 for inherited) 0.01

Byte Unpacking

Output port (unpacked) data
types (cell array)

{'single', 'double',
'uint32', 'int8'}

Output port (unpacked)
dimensions (cell array)

{4, [2 2], [2 2], [5 3]}

Byte alignment

2

* The second output port of the UDP Receive block is sent into a terminator. You can use this output
to determine when a packet has arrived. The same is true for the outputs of the Byte Unpack

block, which in a real model would be used in the model.

* The Receive width of the UDP Receive block matches the output port width of the Byte Packing
block in udpsendreceiveB.

» The Byte Unpacking block settings match the settings of the Byte Packing block of
udpsendreceiveB.

* The number of unpacked bytes is 79. The byte alignment is 2, so the Byte Unpacking block
assumes that the input vector includes a pad 0 to align the vector on an even-numbered boundary.

Set Up udpsendreceiveB

The final udpsendreceiveB model is shown in the figure.

The tables list the parameters for the receive side and the send side of the model.

UDP Data Exchange with Shared Ethernet Board

Dat
Receive UDF packets =
Using host-target connection
From: 192.168.0.2
Langth

wintB (75}

uintB {3x3)

int16

OARS

Recaive

hJ

Unpack

—-a

Terminatori

—-a

Terminator2

double (2xd)
Terminator3
Terminator Byte Unpacking

single{(2*rand(4, 11-1)° 10%{rand"50-25) |

| single i)

h 4

1

double (2x2)
| (2*rand(2,2}-1)"10%rand*600-300) l—b

uindf (B0)
cd Pack g
i . uint32 (2x2)
uint32(rand(2.2)"2*32) o i} o
C3
Width
) ntE (Sx3)
| int8{ 255 rand({3,3)-128) }—P
C4
Byte Packing

Dat
® Send UDF packsts
U=zing host-target connection
To: 192.168.0.1:25000

Length

udpsendreceiveB Receive Side

Sand

Block Parameter Value

UDP Receive Local IP address Use host-target connection
Local port 25000
Receive width 75
Receive from any source off
From IP address 192.168.0.2
Sample time (-1 for inherited) 0.01

Byte Unpacking Output port (unpacked) data {'uint8', 'intl6', 'double'}
types (cell array)
Output port (unpacked) {[3 31, 1, [2 4]}
dimensions (cell array)
Byte alignment 1

The second output port of the UDP Receive block is sent into a terminator. You can use this output

to determine when a packet has arrived. The same is true for the outputs of the Byte Unpack
block, which in a real model would be used in the model.

block in udpsendreceiveA.

The Receive width of the UDP Receive block matches the output port width of the Byte Packing

The Byte Unpacking block settings match the Byte Packing block in udpsendreceiveA.

14-7

14 Real-Time UDP Communication Support

14-8

udpsendreceiveB Send Side

Block Parameter Value
Byte Packing Output port (packed) data |'uint8'
type
Input port (unpacked) data [{'single', 'double', 'uint32',
types (cell array) 'int8'}
Byte alignment 2
UDP Send Local IP address Use host-target connection

Local port -1 (autoselect)
To IP address 192.168.0.1
To port 25000
Sample time (-1 for 0.01
inherited)

* The Length input port receives the output of a Width block that calculates the width of the signal

connected to the Data port.

» The Byte Packing block settings match the settings of the Byte Unpacking block of
udpsendreceiveA.

* The number of unpacked bytes is 79. The byte alignment is 2, so the Byte Packing block pads the

output vector with 0 to align on an even-numbered boundary.

See Also

Byte Packing | Byte Unpacking | UDP Configure | UDP Receive | UDP Send

More About
. “Target to Host Transmission using UDP”
. “Target to Target Transmission using UDP”

. “UDP Transport Protocol” on page 14-2

. “UDP Communication Setup” on page 14-9

. “UDP and Variable-Size Signals” on page 14-10

UDP Communication Setup

UDP Communication Setup

The infrastructure provided in the Simulink Real-Time Library for UDP communication consists
mainly of two blocks: a UDP Send block and a UDP Receive block. These blocks are in the Simulink
Real-Time Library, available from the Simulink Library under Simulink Real-Time. You can also
access them from the MATLAB command line by typing:

slrtlib

The blocks are located under the Real-Time UDP heading in the library. The UDP Send block takes
as input a vector of type uint8, which it sends. The UDP Receive block outputs a vector of uint8. To
convert arbitrary Simulink data types into this vector of uint8, use a Byte Packing block. To convert
a vector of uint8s back into arbitrary Simulink data types, use a Byte Unpacking block.

If you are using a dedicated Ethernet port for UDP communication, use a UDP Configure block to
configure the Ethernet interface.

You can have up to 32 UDP blocks in a model—UDP Send and UDP Receive blocks combined in
arbitrary order, plus the optional UDP Configure block.

To communicate with big-endian architecture systems, use the Byte Reversal/Change Endianess
block. Your model does not need this block for communicating between 80x86-based computer
systems running either the Simulink Real-Time kernel or the Microsoft Windows® operating system.

The blocks work from within the Simulink environment and from a real-time application running
under the Simulink Real-Time system. Be cautious about transmitting data between a Simulink
simulation and a real-time application, or using two Simulink models. A Simulink model is not a real-
time model and can run several times faster or slower than a real-time application. Set the sample
time of the UDP Send and UDP Receive blocks and the sample time of the Simulink model so that the
blocks can communicate.

* You cannot configure two UDP Receive blocks with the same local port. For example, two UDP
Receive blocks cannot have the same local port and different IP addresses.

* You cannot configure two UDP Send blocks with the same local port. For example, two UDP Send
blocks cannot have the same local port and different IP addresses.

See Also
Byte Packing | Byte Unpacking | UDP Configure | UDP Receive | UDP Send

More About
. “Target to Host Transmission using UDP”
. “Target to Target Transmission using UDP”

. “UDP Transport Protocol” on page 14-2

14-9

14 Real-Time UDP Communication Support

UDP and Variable-Size Signals

The Simulink Real-Time UDP sublibrary does not directly support variable-size signals. The UDP Send
block input port accepts only fixed-size signals.

To send variable-size signals though UDP, determine the maximum number of elements of a fixed-size
input signal that you expect to connect to the block. Then use the second input, Length, to specify
the number of elements of this input signal to send through UDP.

This example configures the MATLAB Function block to accept a variable-size signal and maps that
signal to a fixed-size output signal. It outputs the number of relevant elements. You can output the
fixed-size output signal and number of elements to the inputs of the UDP Send block.

1 To accept a variable-size input signal, create a MATLAB Function block.
2 In the MATLAB Function block, enter code like the following code. In this code, the maximum
size of the variable-size input signal is 9.
function [y,y length] = fcn(u)
s#codegen
y = uint8(zeros(9,1));
y length = length(u);
for a = 1:y _length
y(a) = u(a);
end
3 In the MATLAB Function Editor, select Tools > Edit Data/Ports. In Ports and Data Manager,
select the data u, and then select the corresponding Variable size check box.
4 Select the data y and enter the size of the variable-size data input signal in the corresponding
Size parameter. For this example, the size value is 9.
5 Provide a variable-size signal source for the MATLAB Function block.
Long Vector
o ¥ ¥ Data
» Send UDP pack
W > :_,:\\] *. Using :gst-targeﬁ;nit::ﬁon
S fen To: 255.255.255.255:25000
Control Signal " p——— ¥_langth | Length
MATLAB Function Send
Short Vector
See Also

MATLAB Function | UDP Send

14-10

Troubleshoot UDP Block Configuration

Troubleshoot UDP Block Configuration

I want to resolve UDP Configure block configuration problems.

What This Issue Means

The Real-Time UDP Configure block configures a dedicated Ethernet network for real-time UDP
operation. If the block configuration does not distinguish cards by specifying a different subnet for
each, errors occur.

Note There is a limitation on the number of UDP Send and UDP Receive blocks in a model. The total
number of these blocks in a model is limited to 2048.

Try This Workaround
To identify UDP Configure block configuration problems, check for these issues.
Duplicate Subnet Calculated in Block

You can use a dedicated Ethernet card for TCP communication while using another card for
communicating between the development and target computers. During model initialization, you get
this error:

The subnet in this block is the same as or is a subset of the subnet
calculated in ''block''. The block calculates the subnet by ANDing the
IP address bitwise with the subnet mask.

Check the IP address and subnet that you assigned to the target computer Ethernet card in the
configuration block. The UDP implementation requires that the two communication channels use
separate subnets.

The block calculates the subnet by ANDing the IP address bitwise with the subnet mask for each
card. For example, these specifications result in the same subnet for both cards:

E1l (development-target): IP address: 192.168.0.25
Subnet mask: 255.255.255.0

Calculated Subnet: 192.168.0.0

E2 (RT-UDP): IP address: 192.168.0.130
Subnet mask: 255.255.255.0

Calculated Subnet: 192.168.0.0

Try a configuration such as the following:

E1l (development-target): IP address: 192.168.0.25
Subnet mask: 255.255.255.0

Calculated Subnet: 192.168.0.0

E2 (RT-UDP): IP address: 192.168.0.130
Subnet mask: 255.255.255.128

14-11

14 Real-Time UDP Communication Support

14-12

Calculated Subnet: 192.168.0.128

In some networks, the development computer must also be in the subnet where the TCP
communication occurs. You can either add a second network card to the development computer or
provide a gateway device to create a dedicated network for TCP communication.

Excluded Ports When Using Development-Target Computer Connection

When you use the same IP address as the communication channel between the development and
target computers, you cannot use ports 22222 and 22223. Simulink Real-Time reserves these ports
for its own use.

ENOPKTS Error

During real-time execution with a UDP model, you sometimes see the error ENOPKTS. This error stops
model execution. When too many packets are received and queued at the UDP socket and too few
packets are removed, this error occurs.

To address this issue, decrease the sample time of your UDP Receive block.
See Also

More About
. “TCP/IP and UDP Interface” (Instrument Control Toolbox)

Real-Time UDP Blocks

15 Real-Time UDP Blocks

15-2

UDP Configure

Initialize Ethernet network interface to use for UDP communication in real-time applications
Library: Simulink Real-Time / Real-Time UDP

Configure UDP

1P address:
PCI bus: slot: function:0

Description

The Real-Time UDP Configuration block configures a dedicated Ethernet network for real-time UDP
operation.

The combination of Local IP Address and Subnet mask must be unique across all Ethernet cards in
the target computer, including the card for communicating between the development and target
computers. Distinguish cards by specifying a different subnet for each. The subnet is the IP address
masked by the subnet mask.

Parameters
General Parameters

Local IP Address — IP address for the Ethernet interface
X.X.X. X

Enter the IP address for the dedicated Ethernet board.

The addresses 0.0.0.0 and 255.255.255. 255 are invalid local IP addresses.

Programmatic Use
Block Parameter: ipAdd

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x. x.x.x

Mask that designates a logical subdivision of a network.

Programmatic Use
Block Parameter: snMask

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

The gateway must be within the network.

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.

Programmatic Use
Block Parameter: gwAdd

PCI bus — PCI bus number of Ethernet card
0 (default) | 0-31

UDP Configure

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: PciBus

Slot — PCI slot number of Ethernet card
0 (default) | 0-31
Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

Function — PCI function number of Ethernet card
0 | integer

Enter the PCI function number for the Ethernet card.
Programmatic Use

Block Parameter: PciFunction

Multicast Parameters

Enable multicast — Enables multicast UDP parameters and operations
off (default) | on
When you select Enable multicast, the UDP multicast parameters become visible.

Example: on

Programmatic Use
Block Parameter: enableMulticast

Multicast IP address list — Selects list of UDP multicast addresses
{'x.x.x.x"'} | cell array of character vectors

Each IP address and corresponding mask parameter set configure the UDP multicast operations. The
multicast IP address and corresponding mask values are AND'ed, and the packets to the destination
addresses that match this value are sent through this interface. In the example values, the two pairs
of address and mask indicate that all packets sent to the IP address corresponding to 224.0.1.XxxX
and 224.0.2.xxx are sent out through the card at [5,0,0].

The address list can include up to 20 multicast addresses. The combination of multicast IP and masks
(multicast subnets) cannot overlap with those values in other configuration blocks. Validation for this
overlap follows validation of the Local IP Address and subnet mask combinations.

Example: {'224.0.1.129"','224.0.2.107"'}

Programmatic Use
Block Parameter: multicastAdd

Mask — Selects the mask for UDP multicast addresses
{'x.x.x.x"'} | cell array of character vectors

See description of Multicast IP address list parameter.
Example: {'255.255.255.0"', '255.255.255.0"'}

15-3

15 Real-Time UDP Blocks

Programmatic Use
Block Parameter: multicastMask

See Also
UDP Receive | UDP Send | getPCIInfo

Topics
“UDP Transport Protocol” on page 14-2
“Troubleshoot UDP Block Configuration” on page 14-11

Introduced in R2016b

15-4

UDP Receive

UDP Receive

Receive data over UDP network from a remote device
Library: Simulink Real-Time / Real-Time UDP

Description

The UDP Receive block receives data over a UDP network from a remote device. It can receive data
by using the connection between the development and target computers or by using a dedicated
Ethernet card. If you use a dedicated Ethernet card, add a UDP Configure block to your model.

The parameter Local IP address applies only when the block executes on a target computer. If your
model is running in Simulink on the development computer, you can use this block to transmit data to
a remote device. In this case, the Windows operating system determines the network connection.

Ports
Output

Data — Data received
vector

Vector of uint8 containing data received over the UDP network. If no new packet is received, the
data values are held. To determine whether a new packet has been received, use the Length output
port.

Data Types: uint8

Length — Number of bytes received
double

Number of bytes in the new packet received, otherwise 0. If more bytes are received than can be
output through the receive port with width defined by Receive width, the excess bytes are
discarded.

Parameters
General Parameters

Local IP address — Destination IP address for receiving data
Use host-target connection (default)

When Local IP address is set to Use host-target connection, the block uses the connection
between the development and target computers. Otherwise, the block uses the value that you set in
the Local IP address parameter of the UDP Configure block.

Programmatic Use
Block Parameter: ipAddress

15-5

15 Real-Time UDP Blocks

15-6

Local port — Destination UDP port through which to receive data
1-65535

Specifies UDP port through which to receive data.

Programmatic Use
Block Parameter: localPort

Receive width — Width of Data output vector
1-65504

Determines the width of the Data output vector. If this value is less than the number of bytes in the
received packet, the excess bytes are discarded.

Programmatic Use
Block Parameter: rcvWidth

Receive from any source — Causes receiver to accept data from any IP address
on (default) | of f

When Receive from any source is on, the block receives data from any accessible IP address. When
it is off, the block receives data from only the address that you specify in From IP address.

To make the From IP address parameter visible, clear Receive from any source.

Programmatic Use
Block Parameter: rcvFmAny

From IP address — Source from which to receive data
0.0.0.0 (default) | x.x.x.x

Enter a valid IP address as a dotted decimal character vector, for example, 10.10.10. 3. You can also
use a MATLAB expression that returns a valid IP address as a character vector.

The default address, 0.0.0.0, causes the block to accept UDP packets from any accessible device. If
you set From IP address to a specific IP address, only packets arriving from that IP address are
received.

The address 255.255.255.255 is an invalid IP address.

To make this parameter visible, clear Receive from any source.

Programmatic Use
Block Parameter: fmAdd

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sampleTime

Multicast Parameters

Receive multicast — Enables multicast UDP parameters and receive operations
off (default) | on

UDP Receive

When you select Enable multicast, the UDP multicast parameters become visible.
Example: on

Programmatic Use
Block Parameter: rcvMulticast

Multicast group address — Multicast group to join
X.X.X.X | dotted decimal character vector

Enter a valid IP address as a dotted decimal character vector, for example, 224.0.0.0.

The UDP Receive block issues an error at model update if the group IP address is not a valid
multicast address in the range 224.0.0.0 through 239.255.255.255.

Example: 224.100.1.1

Programmatic Use
Block Parameter: multicastAddress

See Also
Byte Reversal/Change Endianess | Byte Unpacking | UDP Configure | UDP Send
Topics

“UDP Transport Protocol” on page 14-2
“Troubleshoot UDP Block Configuration” on page 14-11

Introduced in R2016b

15-7

15 Real-Time UDP Blocks

15-8

UDP Send

Send data over UDP network to a remote device
Library: Simulink Real-Time / Real-Time UDP

Data
Send UDP packsts
Using hosttarget connection
To- 255 255.255 2558001
Length

Description

The UDP Send block sends data over a UDP network to a remote device. The block can send data by
using the connection between the development and target computers or by using a dedicated
Ethernet card. If you use a dedicated Ethernet card, add a UDP Configure block to your model.

The parameter Local IP address applies only when the block executes on a target computer. If your
model is running in Simulink on the development computer, you can use this block to transmit data to
a remote device. In this case, the Windows operating system determines the network connection.

To broadcast to all devices, set To IP address to 255.255.255. 255, otherwise set To IP address to
a valid IP address.

Ports
Input

Data — Data to transmit
vector

Vector of uint8 containing data to transmit over the UDP network. To determine how many bytes of
data to transmit, use the Length input port.

Data Types: uint8

Length — Number of bytes of data to transmit
double

Determines the number of bytes of data to transmit. Specify the width of the Data vector as the
maximum number of bytes that you expect to transmit.

Parameters

Local IP address — Source IP address for sending data
Use host-target connection (default)

When Local IP address is set to Use host-target connection, the block uses the connection
between the development and target computers. Otherwise, the block uses the value that you set in
the Local IP address parameter of the UDP Configure block.

If the UDP Configure block settings enable multicast operation, the Send block sends to the IP
address that is set to the group IP address. For real time multicast send capability, the model requires
a UDP Configure block. If the model does not include this block, a warning about route unavailability
is issued on the target.

UDP Send

Programmatic Use
Block Parameter: ipAddress

Local port — Source UDP port through which to transmit data
1-65535| -1

Specifies local UDP port through which to transmit data.

The value —1 means that the block transmits using any available port.

Programmatic Use
Block Parameter: localPort

To IP address — IP address of target device
255.255.255.255 (default) | x. x.x.x

Specifies IP address of target device. To broadcast, send to 255.255.255.255.

Programmatic Use
Block Parameter: toAddress

To port — UDP port of target device
1-65535

Specify the UDP port of target device. With To IP address, this parameter defines the destination of
the data transmission.

Programmatic Use
Block Parameter: toPort

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sampleTime

See Also
Byte Packing | Byte Reversal/Change Endianess | UDP Configure | UDP Receive
Topics

“UDP Transport Protocol” on page 14-2
“Troubleshoot UDP Block Configuration” on page 14-11

Introduced in R2016b

15-9

Parallel Ports, PTP, SAE J1939,
Shared Memory

11

Parallel Ports

16 Parallel Ports

Using Parallel Ports

16-2

In this section...

“Introduction” on page 16-2
“Using the Parallel Port as an Interrupt Source” on page 16-3

“Using Add-On Parallel Port Boards” on page 16-3

Introduction

Most target computers have a parallel port that you can use for various devices. The Simulink Real-
Time block library provides blocks that enable you to use the parallel ports of a target computer for
digital input and output, and source interrupts.

Caution The parallel port is part of the motherboard on many computers. Be careful when
configuring the port and when connecting external devices to the port. Incorrect connections to the
port can damage your computer.

The Simulink Real-Time parallel port blocks assume that the connector to the parallel port has one
25-pin connector whose pins have the following designations:

* FEight data pins

* Five status pins

* Four control pins

* Eight ground pins

Function Channel 1 2 3 4 5 6 7 8 |Additional Pins
Bit 0 1 2 3 4 5 (] 7

Digital Input 02 03 04 |05 |06 |07 (08 |09

Digital Output 02 03 04 |05 |06 |07 (08 |09

Digital Input (Status) 15 13 12 |10 |11

Digital Output (Control) 01 14 16 |17

Interrupt 10

Using Parallel Ports

Col1
14| C1

DO | 2
15| S3

D1| 3
16| C2

D2 | 4
17| C3

D3| 5
18 | Gnd

D4 | 6
19| Gnd
DS | 7 20| Gnd
n

D6 | 8
21| Gnd

D719
22| Gnd

S6 |10
23| Gnd

S7 |11
24 | Gnd

S5 112
25| Gnd

S4 |13

Using the Parallel Port as an Interrupt Source

To use the parallel port as an interrupt source, use pin 10 of the parallel port as the interrupt source.
Configure the Simulink Real-Time model as follows:
1 Open the Configuration Parameters dialog box.
Select Code Generation > Simulink Real-Time Options.
3 In the Execution options pane:

* From Execution mode, select Real-Time.

* From Real-time interrupt source, select the IRQ level (typically 7).

* From I/O board generating the interrupt, select Parallel Port.

* In PCI slot (-1: autosearch) or ISA base address, enter the base address of the parallel
port (typically 0x378).

If you want to use the Async IRQ Source block, you do not have to configure the model. Instead, you
can set the Async IRQ Source block parameters as follows:

* IRQ line number — Select the IRQ level (typically 7).
* I/0 board generating the interrupt — Select Parallel Port.
* PCI slot — Enter the base address of the parallel port (typically 0x378).

Using Add-On Parallel Port Boards

To use an add-on parallel port board with the parallel port blocks, configure the base address for the
board as follows:

1 To get the base address of a board, in the MATLAB Command Window, call the function
getPCIInfo with the 'verbose' option. For example:

16-3

16 Parallel Ports

tg = slrt;
getPCIInfo(tg, 'verbose')

Identify the base address for the add-on parallel port board.

In your model, open the parallel port block and set the value of the Base address parameter to
Other.

The Alternate base address parameter is displayed.
In the Alternate base address parameter, enter the base address you identified in step 2.
5 Configure the rest of the block as desired.

Note You cannot use add-on parallel port boards as interrupt sources. You also cannot trigger the
execution of a model with these boards.

16-4

Parallel Port Blocks

17 Parallel Port Blocks

17-2

Parallel Port Digital Input

Parallel Port Digital Input block

Library: Simulink Real-Time / Digital Input / Parallel Port
Farallel Port
[0x3TR) I
Digital Input
Description
Scaling Input to Output
1/0 Module Input Block Output Data Type Scaling
TTL Double (Format: 8 1-bit Double:
Channels) TTL low = 0.0
TTL high = 1.0
uint8 (Format: One 8-bit uint8:
Port) TTL low corresponding bit is
clear

TTL high corresponding bit is
set

Parameters

Base address — Port base address
0x378 (default) | 0x3bc | 0x278 | Other

Select a parallel port base address. This address depends on the target computer BIOS. From the list,
select one of the following. If your base address is not one of the supplied standard base addresses,
select Other and enter your base address in Alternate base address.

Programmatic Use
Block Parameter: BaseAddress

Alternate base address — Port alternate base address
0x378 (default)

Enter an alternate parallel port base address, in hexadecimal. This parameter appears only if you
select Other for Base address. For example,

0x300

Programmatic Use
Block Parameter: BaseAddress

Format — Data mode
Single 8-bit Port (default) | 8 1-bit Channels

From the list, select one of the following modes to specify how to treat data:

Parallel Port Digital Input

e 8 1-bit Channels

Treats data as individual bits. Configures block to accept up to eight 1-bit channels.
* Single 8-bit Port
Treats data as a single byte. Configures block to accept one 8-bit port.

Programmatic Use
Block Parameter: Format

Channels — Number of 1-bit channels
[1] (default)

Enter a vector of numbers between 1 and 8. This parameter appears only if you select 8 1-bit
Channels for Format. For example,

[1, 31

Programmatic Use
Block Parameter: Channels

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: SampleTime

See Also

Topics
“Using Parallel Ports” on page 16-2

Introduced in R2007a

17-3

17 Parallel Port Blocks

17-4

Parallel Port Digital Input Status Bits

Parallel Port Digital Input Status Bits block

Library: Simulink Real-Time / Digital Input / Parallel Port
s |
Digital Input
{Status Bits)
Description
Scaling Input to Output
1/0 Module Input Block Output Data Type Scaling
TTL Double (Format: 5 1-bit Double:
Channels) TTL low = 0.0
TTL high = 1.0
uint8 (Format: One 5-bit uint8:
Port) TTL low corresponding bit is
clear

TTL high corresponding bit is
set

Parameters

Base address — Port base address
0x378 (default) | 0x3bc | 0x278 | Other

Select a parallel port base address. This address depends on the target computer BIOS. From the list,
select one of the following. If your base address is not one of the supplied standard base addresses,
select Other and enter your base address in Alternate base address.

Programmatic Use
Block Parameter: BaseAddress

Alternate base address — Port alternate base address
0x378 (default)

Enter an alternate parallel port base address, in hexadecimal. This parameter appears only if you
select Other for Base address. For example,

0x300

Programmatic Use
Block Parameter: BaseAddress

Format — Data mode
Single 5-bit Port (default) |5 1-bit Channels

From the list, select one of the following modes to specify how to treat data:

Parallel Port Digital Input Status Bits

e 5 1-bit Channels

Treats data as individual bits. Configures block to accept up to five 1-bit channels.
* Single 5-bit Port
Treats data as a single byte. Configures block to accept one 5-bit port.

Programmatic Use
Block Parameter: Format

Channels — Number of 1-bit channels
[1] (default)

Enter a vector of numbers between 1 and 5. This parameter appears only if you select 5 1-bit
Channels for Format. For example,

[1, 31

Programmatic Use
Block Parameter: Channels

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: SampleTime

See Also

Topics
“Using Parallel Ports” on page 16-2

Introduced in R2007a

17-5

17 Parallel Port Blocks

17-6

Parallel Port Digital Output

Parallel Port Digital Output block
Simulink Real-Time / Digital Output / Parallel Port

Library:

Description

Scaling Output to Input

Parallel Port
(0=37E)
Dhgital Crutput

1/0 Module Output Block Input Data Type Scaling
TTL Double (Format: 8 1-bit Double:
Channels) < 0.5 =TTL low
> (0.5 = TTL high
uint8 (Format: One 8-bit uint8:
Port) Bit clear = TTL low
Bit set = TTL high
Parameters

Base address — Port base address
0x378 (default) | 0x3bc | 0x278 | Other

Select a parallel port base address. This address depends on the target computer BIOS. From the list,
select one of the following. If your base address is not one of the supplied standard base addresses,
select Other and enter your base address in Alternate base address.

Programmatic Use
Block Parameter: BaseAddress

Alternate base address — Port alternate base address
0x378 (default)

Enter an alternate parallel port base address, in hexadecimal. This parameter appears only if you
select Other for Base address. For example,

0x300

Programmatic Use
Block Parameter: BaseAddress

Format — Data mode
Single 8-bit Port (default) | 8 1-bit Channels

From the list, select one of the following modes to specify how to treat data:

Parallel Port Digital Output

e 8 1-bit Channels

Treats data as individual bits. Configures block to accept up to eight 1-bit channels.
*+ Single 8-bit Port

Treats data as a single byte. Configures block to accept one 8-bit port.

Programmatic Use
Block Parameter: Format

Channels — Number of 1-bit channels
[1] (default)

Enter a vector of numbers between 1 and 8. This parameter appears only if you select 5 1-bit
Channels for Format. For example,

[1, 3]

Programmatic Use
Block Parameter: Channels

Initial value vector — Initial voltage value
[0] (default)

The initial value vector contains the initial voltage values for the output channels. Enter a scalar or a
vector that is the same length as the channel vector. If you specify a scalar value, that value is
replicated as the initial value over the channel vector. The channels are set to the initial values
between the time the model is downloaded and the time it is started.

Programmatic Use
Block Parameter: InitialValues

Final action vector — Channel behavior on model termination
[0] (default)

The final action vector controls the behavior of the channel at model termination. Enter a scalar or a
vector that is the same length as the channel vector. If you specify a scalar value, that setting is
replicated over the channel vector. If you specify a value of 1, the corresponding channel is reset to
the value specified in the initial value vector. If you specify a value of -1, the block sets the channel to
the value specified in the Final value vector value for that channel. If you specify a value of 0, the
channel remains at the last value attained while the model was running.

Programmatic Use
Block Parameter: FinalActions

Final value vector — Final voltage value
[0] (default)

The final value vector contains the final value for each output channel. Enter a scalar or a vector that
is the same length as the channel vector. If you specify a scalar value, that setting is replicated over
the channel vector. If the Final action vector is - 1, the block sets the channel to this value on model
termination.

Programmatic Use
Block Parameter: FinalValues

17-7

17 Parallel Port Blocks

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: SampleTime

See Also

Topics
“Using Parallel Ports” on page 16-2

Introduced in R2007a

17-8

Parallel Port Digital Output Control Bits

Parallel Port Digital Output Control Bits

Parallel Port Digital Output Control Bits block

Library: Simulink Real-Time / Digital Output / Parallel Port
Parallal Port
A Dt Gulput
{Control Bits)
Description
Scaling Output to Input
1/0 Module Output Block Input Data Type Scaling
TTL Double (Format: 4 1-bit Double:
Channels) < 0.5 =TTL low
> (0.5 = TTL high
uint8 (Format: One 4-bit uint8:
Port) Bit clear = TTL low
Bit set = TTL high
Parameters

Base address — Port base address
0x378 (default) | 0x3bc | 0x278 | Other

Select a parallel port base address. This address depends on the target computer BIOS. From the list,
select one of the following. If your base address is not one of the supplied standard base addresses,
select Other and enter your base address in Alternate base address.

Programmatic Use
Block Parameter: BaseAddress

Alternate base address — Port alternate base address
0x378 (default)

Enter an alternate parallel port base address, in hexadecimal. This parameter appears only if you
select Other for Base address. For example,

0x300

Programmatic Use
Block Parameter: BaseAddress

Format — Data mode
Single 8-bit Port (default) | 8 1-bit Channels

From the list, select one of the following modes to specify how to treat data:

17-9

17 Parallel Port Blocks

17-10

e 8 1-bit Channels

Treats data as individual bits. Configures block to accept up to eight 1-bit channels.
*+ Single 8-bit Port

Treats data as a single byte. Configures block to accept one 8-bit port.

Programmatic Use
Block Parameter: Format

Channels — Number of 1-bit channels
[1] (default)

Enter a vector of numbers between 1 and 8. This parameter appears only if you select 5 1-bit
Channels for Format. For example,

[1, 3]

Programmatic Use
Block Parameter: Channels

Initial value vector — Initial voltage value
[0] (default)

The initial value vector contains the initial voltage values for the output channels. Enter a scalar or a
vector that is the same length as the channel vector. If you specify a scalar value, that value is
replicated as the initial value over the channel vector. The channels are set to the initial values
between the time the model is downloaded and the time it is started.

Programmatic Use
Block Parameter: InitialValues

Final action vector — Channel behavior on model termination
[0] (default)

The final action vector controls the behavior of the channel at model termination. Enter a scalar or a
vector that is the same length as the channel vector. If you specify a scalar value, that setting is
replicated over the channel vector. If you specify a value of 1, the corresponding channel is reset to
the value specified in the initial value vector. If you specify a value of -1, the block sets the channel to
the value specified in the Final value vector value for that channel. If you specify a value of 0, the
channel remains at the last value attained while the model was running.

Programmatic Use
Block Parameter: FinalActions

Final value vector — Final voltage value
[0] (default)

The final value vector contains the final value for each output channel. Enter a scalar or a vector that
is the same length as the channel vector. If you specify a scalar value, that setting is replicated over
the channel vector. If the Final action vector is - 1, the block sets the channel to this value on model
termination.

Programmatic Use
Block Parameter: FinalValues

Parallel Port Digital Output Control Bits

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: SampleTime

See Also

Topics
“Using Parallel Ports” on page 16-2

Introduced in R2007a

17-11

Precision Time Protocol

» “Precision Time Protocol” on page 18-2

* “Synchronize Timestamps Across Data-Gathering Network” on page 18-4
» “Data Acquisition and Data Analysis Example Description” on page 18-14
* “Troubleshoot Precision Time Protocol Configuration” on page 18-21

* “Prerequisites, Limitations, and Unsupported Features” on page 18-24

18 Precision Time Protocol

Precision Time Protocol

Measurement and control systems increasingly use distributed system technologies. To distribute
measurement or control tasks over interconnected computing devices, such systems maintain a
system-wide sense of time. Simulink Real-Time uses the Precision Time Protocol (PTP) to synchronize
the PTP clock of each computer to a reference time. The PTP clock of a Simulink Real-Time target
computer is the clock on the PTP network card.

PTP (IEEE 1588) is a protocol that synchronizes PTP clocks throughout a computer network. The
current version of PTP (IEEE 1588-2008) describes a hierarchical master-slave architecture for clock
distribution.

By design, this protocol is more accurate for local systems than the Network Time Protocol (NTP) and
more robust than the Global Positioning System (GPS). On a local area network, the protocol achieves
PTP clock accuracy in the submicrosecond range, making it suitable for distributed measurement.
When you use this protocol to synchronize Simulink Real-Time applications across multiple target
computers, it can synchronize execution to under 10 ps.

Suppose that you are designing a control system for a wind power plant. To determine the plant
parameters, you attach sensors that acquire the data shown in the diagram.

Ethernet Data acquisition
switch

[a)
o
3
©
c
=1
o
=

Wind velocity ——
ﬂ Wind direction —
Ambient temperature ———

e1ep JuswuolIAug

]_

Angular velocity ————
Axis direction ——
Feathering angle ——88 ——

J91ndwod
ejep ooy

Development Development

)i

computer switch computer
8 &
Generator voltage ——mm88 ™ — -g é
U Poweroutput — | & 3
Generator temperature — é
=

F

To record the data and timestamps, you connect the sensors to a set of data acquisition target
computers. You interconnect the data acquisition computers through an Ethernet network and a
switch that supports the PTP protocol (a PTP transparent clock or boundary clock). To access the data
and timestamps, you connect the target computers to a development computer through another
Ethernet network and switch. On the development computer, you run MATLAB to do the data
analysis, including:

» Sorting by time the data recorded on the different computers to analyze the event sequence over
time.

18-2

Precision Time Protocol

» Filtering sensor data that have invalid (unsynchronized) timestamps.

* Integrating values of measured data collected at the same time from sensors connected to
different computers.

To synchronize the target computer PTP clocks, you create a Simulink Real-Time model for each
target computer. Each model uses the following PTP blocks:

* IEEE 1588 Ethernet — Run PTP protocol with Raw Ethernet as transport protocol. This block
communicates with the corresponding blocks on the other target computers and determines the
time offset that synchronizes them.

* IEEE 1588 Read Parameter — Output a Precision Time Protocol parameter value. Of the possible
output values, you select PTP time (nanosecond).

For debugging, you can configure a separate IEEE 1588 Read Parameter block to read other
values, such as Protocol state.

* IEEE 1588 Sync Execution — Synchronize model execution to Precision Time Protocol clock. You
can now make measurements at the same time step.

* IEEE 1588 Sync Status — Output the synchronization status of the Precision Time Protocol. When
the value is true, the data timestamps are synchronized to the required precision.

As a best practice, for each model, you enclose the sensor block and the IEEE 1588 Read Parameter
and IEEE 1588 Sync Status blocks in an Atomic Subsystem block. By using the Atomic Subsystem
block, you bring the PTP timestamp as close as possible to the time of the data measurement.

Finally, you build and download the real-time applications to each target computer, run the
applications, and collect and analyze the results at each valid timestamp. You use the results to
design a control system for the wind power generator.

See Also

Atomic Subsystem | IEEE 1588 Read Parameter | IEEE 1588 Ethernet | IEEE 1588 Sync Execution |
IEEE 1588 Sync Status

More About

. “Synchronize Timestamps Across Data-Gathering Network” on page 18-4
. “IEEE® 1588™ Precision Time Protocol - Execution Synchronization”

. “Data Acquisition and Data Analysis Example Description” on page 18-14
. “Prerequisites, Limitations, and Unsupported Features” on page 18-24

External Websites

. standards.ieee.org

18-3

https://standards.ieee.org

18 Precision Time Protocol

Synchronize Timestamps Across Data-Gathering Network

18-4

This example shows a data acquisition target computer that transmits timestamped data to a second
target computer that analyzes the data.

Required Products: Simulink®, Simulink Real-Time™
Other Requirements:

* One Windows® development computer with an Ethernet card.
» Two Speedgoat target computers.
» At least one Intel® 82574 Ethernet card on each target computer

* One Ethernet card on each target computer dedicated to communication between the
development and target computers.

* One Ethernet switch.
» Four crossover Ethernet cables.
The real-time applications use Precision Time Protocol blocks to synchronize the Intel 82574 Ethernet

card PTP clocks and the kernel clocks for each computer. You can log the PTP timestamps from both
computers and use them to associate transmitted data with reference data.

Configure Hardware

Your Speedgoat target machines include at least two Ethernet cards installed, one of them an Intel
82574 Ethernet card. Use the Intel 82574 Ethernet card for the PTP network. Use the other to
connect the two target computers through the Ethernet switch to the development computer. The
network looks like this figure.

FTP + Data Communication

Data
Acguisition
compuier

Crata analysis
Computer

Target ta Development
Computer Communiation

Develaprmemnt
computer switch

I_",.ll-_-'r-E~||||:|r'|"|E'|1[

COFfpUTEr

Synchronize Timestamps Across Data-Gathering Network

Required Information

To configure the network and your models for this example, collect the following information for each
target computer:
* Identifiers

* PTP card: Device name, PCI bus and slot numbers, MAC address that you assign to the PTP card
that is transmitting non-PTP data

* COM card: Device name, PCI bus and slot numbers, Ethernet index of the card

You can find the built-in MAC address of the PTP card from a source such as a bill of materials or a
label on the hardware. You can find the device name and the PCI bus and slot numbers by using
SimulinkRealTime.target.getPClInfo. You can find the Ethernet index of the communication card by
using SimulinkRealTime.getTargetSettings.

Example Information
TargetPC1

Identifier — TargetPC1
PTP card

* Device name — Intel 82574L
+ PClbus —5

* PCIslot—0

* MAC Address — [EEPROM}

COM card

* Device name — Intel 82579LM
* Ethernet index — 0

* PClbus —0

* PCIslot — 25

¢ MAC address — N/A

TargetPC2
Identifier — TargetPC2
PTP card

* Device name — Intel 82574L

« PClbus—0

* PCIslot —52

*+ MAC Address — 68:05:CA:31:B9:EF

COM card

* Device name — Intel 82541GI LF
* Ethernetindex — 0

18-5

18 Precision Time Protocol

18-6

* PCIbus— 16
e PCIslot—4
* MAC address — N/A

Hardware Configuration

1

Connect an Ethernet cable between the PTP card in TargetPC1 and the PTP card in TargetPC2.
This connection creates the PTP network. To configure the IEEE 1588 Ethernet blocks in the two
real-time applications, you must have the PCI bus and PCI slot of these cards.

Connect an Ethernet cable from the Comm card in TargetPC1 to the Ethernet switch.
Connect an Ethernet cable from the Comm card in TargetPC2 to the switch.

Connect an Ethernet cable from the switch to the development computer. These connections
complete the communication network between the development computer and the target
computers.

Start the two target computers. Use slrtexplr to connect to them. If you cannot establish
communication with a target computer, verify the Ethernet index assigned to the communication
port.

Configure Real-Time Applications

In this example, the system contains two real-time applications running on separate target
computers. The data acquisition application transmits PTP and non-PTP data to the data analysis
application. To configure the data acquisition application, you must have the MAC address of the PTP
card that is installed in the data analysis target computer. The data analysis application transmits
only PTP data to the data acquisition application. To configure the data analysis application, you can
use the MAC address stored in the EEPROM of the PTP card in the data acquisition target computer.

Configure Data Acquisition Application

To configure this application, first perform the steps in Configure Hardware. Collect the PCI bus, PCI
slot, and role of the Ethernet cards installed in the target computers.

The data acquisition application is ex ptp _sync_src
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_ptp _sync src')))). It runs on TargetPC1l. To configure the application:

Set Configuration Parameters

D W N =

© 0 N o U

Open ex_ptp sync src.
In the Configuration Parameters dialog box, open the Solver pane.
Verify that Type is Fixed-step.

Verify that Fixed-step size (fundamental sample time) is set to an explicit value and not to
auto (best practice). Use the same sample time as in the data analysis application.

Verify that Allow tasks to execute concurrently on target is set.
Take the defaults for the other settings.

Open the Simulink Real-Time Options pane.

Verify that Build for default target computer is cleared.

Verify that Specify target computer name is TargetPC1.

10 Verify that Execution mode is Real-Time.

Synchronize Timestamps Across Data-Gathering Network

11

Take the defaults for the other settings.

Configure PTP Blocks

10
11
12

13
14

15
16
17

18

Open the IEEE 1588 Ethernet block
Open the General pane.

From the information for the TargetPC1 PTP card, enter the values 5 and 0 for PCI bus and
PCI slot.

Verify that the IEEE 1588 Ethernet Sample time value is a multiple of the Fixed-step size
(fundamental sample time) value.

Verify that Sample time has the same value as in the data analysis model.
Open the Network parameters pane.

From the information for the TargetPC1 PTP card, in the Source MAC address box, select
EEPROM.

Verify that Destination MAC address is Standard PTP multicast.
Open the Clock parameters pane.

Verify that Timescale (epoch) is PTP (1970-01-01).

Verify that Delay measurement mechanism is Request-response.

Set the Slave only check box. This setting prevents the software from making this node the
master PTP clock node.

Open the Time intervals pane.

Verify that Announce interval (second), Sync interval (second), and Min delay or pdelay
request interval (second) are at least three times the Sample time value.

Verify that the intervals are integral multiples of Sample time.
Verify that the intervals have the same settings as in the data analysis model.

In the remaining top-level PTP blocks, verify that the Sample time value matches that in the
IEEE 1588 Ethernet block.

Open PTP Clock-Data Subsystem. For each block in the subsystem, verify that the Sample time
value matches that in the IEEE 1588 Ethernet block.

Configure Data Communication Blocks

1

From the information for the TargetPC2 PTP card, in the Create Ethernet Packet block dialog
box, set Destination MAC to macaddr('68:05:CA:31:B9:EF').

Set EtherType (use 0 for length) to hex2dec('0010'). Using this type distinguishes the data-
specific messages from the PTP-specific messages, which use the same Ethernet card.

In the Ethernet Tx block, verify that the Sample time value matches that in the IEEE 1588
Ethernet block.

Save the updated model in your working folder. You cannot build and run a real-time application
in the examples folder.

Configure Data Analysis Application

To configure this application, first perform the steps in Configure Hardware. Collect the PCI bus, PCI
slot, and role of the Ethernet cards that are installed in the target computers. To configure the PTP
card in the data analysis target computer, use the MAC address that you specified in the Create
Ethernet Packet block of the data acquisition application.

18-7

18 Precision Time Protocol

18-8

The data analysis application is ex_ptp sync sink
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_ptp _sync sink')))). It runs on TargetPC2. To configure the application:

Set Configuration Parameters

A W N R

© 00 N O U

10
11

Open ex ptp _sync_sink.
In the Configuration Parameters dialog box, open the Solver pane.
Verify that Type is Fixed-step.

Verify that Fixed-step size (fundamental sample time) is set to an explicit value (best
practice) and not to auto. Use the same sample time as in the data acquisition application.

Verify that Allow tasks to execute concurrently on target is set.
Take the defaults for the other settings.

Open the Simulink Real-Time Options pane.

Verify that Build for default target computer is cleared.

Verify that Specify target computer name is TargetPC2.

Verify that Execution mode is Real-Time.

Take the defaults for the other settings.

Configure PTP Blocks

0 N o un

10
11
12
13

14
15

16
17

Open the IEEE 1588 Ethernet block.
Open the General pane.

From the information for the TargetPC2 PTP card, enter the values 52 and 0 for PCI bus and
PCI slot.

Verify that the IEEE 1588 Ethernet Sample time value is a multiple of the Fixed-step size
(fundamental sample time) value.

Verify that Sample time has the same value as in the data acquisition IEEE 1588 Ethernet block.
Open the Network parameters pane.
In the Source MAC address box, select Specify.

From the information for the TargetPC2 PTP card, in the Specify source MAC address text
box, enter macaddr('68:05:CA:31:B9:EF"). You can enter an arbitrary MAC address in this box,
provided it is unique in the PTP network.

Verify that Destination MAC address is Standard PTP multicast.
Open the Clock parameters pane.

Verify that Timescale (epoch) is PTP (1970-01-01).

Verify that Delay measurement mechanism is Request-response.

Verify that Slave only is cleared. This setting allows the software to make this node the master
PTP clock node.

Open the Time intervals pane.

Verify that Announce interval (second), Sync interval (second), and Min delay or pdelay
request interval (second) are at least three times the Sample time value.

Verify that the intervals are integral multiples of Sample time.
Verify that the intervals have the same settings as in the data acquisition model.

Synchronize Timestamps Across Data-Gathering Network

18

19

In the remaining top-level PTP blocks, verify that the Sample time value matches that in the
IEEE 1588 Ethernet block.

Open PTP Clock-Data Subsystem. For each block in the subsystem, verify that the Sample time
value matches that in the IEEE 1588 Ethernet block.

Configure Data Communication Blocks

W N

N o u A

Open PTP Clock-Data Subsystem
Open the Ethernet Rx block.

Open the Rx pane and verify that the Sample time value matches that in the IEEE 1588
Ethernet block.

Open the Filter pane.
Verify that Filter criteria is Specify types to match.
Verifty that Receive these types (vector of types 0-65535) is [hex2dec('0010"')].

Save the updated model in your working folder. You cannot build and run a real-time application
in the examples folder.

Build, Download, and Run Real-Time Applications

In this example, the data acquisition application builds and is downloaded to TargetPC1. The data
analysis application builds and is downloaded to TargetPC2. To run these applications, first perform
the steps in Configure Real-Time Applications. MATLAB® and Simulink Real-Time Explorer must be
running in your working folder.

Build, download, and run the applications:

o U1 A W N R

Start TargetPCl and TargetPC2.

In the Explorer Targets pane, connect to TargetPC1 and TargetPC2.

In your working folder, open ex ptp sync src and ex ptp sync sink.
Build and download ex ptp sync src to TargetPCl.

Build and download ex_ptp sync sink to TargetPC2.

In the Explorer Applications pane, for TargetPCl/ex ptp sync _src and TargetPC2/
ex_ptp sync_sink, change the property Stop Time to Inf.

In the Explorer Applications pane, start ex ptp sync src and ex ptp sync sink.

For both applications, waveform data starts streaming in the target scopes labeled Data.
However, the timestamps displayed as signal Time are not initially valid. The two applications go
through the following sequence of Sync Status and State values:

1. Initialization:

ex _ptp_sync _src State - 4 (LISTENING)
ex_ptp sync src Sync Status - 0 (not synchronized)
ex_ptp sync sink State - 4 (LISTENING)
ex_ptp sync sink Sync Status - 0 (not synchronized)

2. Master allocation and synchronization

ex_ptp sync sink State - 6 (MASTER)

18-9

18 Precision Time Protocol

* ex ptp sync sink Sync Status - 1 (synchronized)
3. Slave allocation and synchronization

* ex_ptp _sync src State - 9 (SLAVE)
* ex ptp _sync src Sync Status - 1 (synchronized)

For the data acquisition node (the slave node), the final state looks like this figure.

4| Simulink Real-Time Target Screen

1458028778832061260 . BABAAA

1.880808

9 .8686008

1456028778 . 832668

a.888008

Simulink Real-Time™

18-10

For the data analysis node (the master node), the final state looks like this figure.

4. 64e—AAS

Synchronize Timestamps Across Data-Gathering Network

4| Simulink Real-Time Target Screen - X

Z.B8e—B85

Ref Data

145882879245603 16606 . AAABAE 1458A028792455A79460 . 6ABBAA
1.880808 1.8868008
6 . AABABA

1458828792 . 4568083

—8.6888683

Simulink Real-Time™

For this example, the sensor and reference Sine Wave blocks are set to the same frequency and
amplitude, but start at arbitrary times. The difference in start time causes a phase difference between
the sine waves. The phase difference appears on the Delta scope as a waveform that settles to a
constant amplitude.

The phase difference is constant because the IEEE 1588 Sync Execution blocks synchronize the
kernel clocks on the two target computers. If you do not include these blocks, the kernel clocks of the
two target computers drift apart. As a result, the Delta waveform shows a beat frequency.

18-11

18 Precision Time Protocol

4. Simulink Real-Time Target Screen - X

Z.B83e—B85

Ref Data

1458828459922437606 . AAABAE 1458A28459922347860 . 6ABBAA

1.880808 1.8868008

6 . AABABA

Simulink Real-Time™

With the IEEE 1588 Sync Execution block, you can make measurements across multiple target
computers at a synchronized time step. However, the kernel interrupt clock controller can shorten
some time steps up to 10% of the fundamental sample time, resulting in a CPU overload.

See Also

IEEE 1588 Sync Execution | IEEE 1588 Ethernet | IEEE 1588 Read Parameter | IEEE 1588 Sync
Status | open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples’, 'ex ptp data sink'))) |
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples’, 'ex ptp data src'))) |
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples’, 'ex ptp sync sink'))) |
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex ptp sync_src')))

More About

. “Data Acquisition and Data Analysis Example Description” on page 18-14

18-12

Synchronize Timestamps Across Data-Gathering Network

“IEEE® 1588™ Precision Time Protocol - Execution Synchronization”
“Precision Time Protocol” on page 18-2

18-13

18 Precision Time Protocol

Data Acquisition and Data Analysis Example Description

18-14

This example features a data acquisition target computer that transmits timestamped sensor data to a
second target computer. The second target computer processes the sensor data and displays the data
and the difference between the sensor data and reference data. Both target computers connect to a
development computer. The development computer runs Simulink and Simulink Real-Time Explorer to
build, download, and run real-time applications on each target computer. The real-time applications
use Precision Time Protocol (PTP) blocks to synchronize the PTP clocks and kernel clocks on each
computer.

Data Acquisition Application

The data acquisition application is a PTP slave node that acquires data from a sensor, which a Sine
Wave block represents. The application transmits the sensor data to the data analysis application.

Top-Level Model

The PTP initialization block and the blocks that create and transmit the Ethernet packet are in the
top-level model:
* IEEE 1588 Ethernet — Configures the PTP network card clock as a slave clock.

* JEEE 1588 Read Parameter — Shows when the PTP clock has been allocated as a slave clock
(value 9). Configured as Read Protocol state.

» IEEE 1588 Sync Execution — Aligns the kernel clocks across multiple target computers. The block
output shows the difference between the following times:
* The PTP time at the real-time interrupt
* The nearest PTP time that is a multiple of the fundamental sample time

* Byte Packing — Packs the sensor data, timestamp, and synchronization status into an Ethernet
packet.

* Create Ethernet Packet — Addresses the Ethernet packet to the MAC address of the data analysis
application.

» Ethernet Tx — Transmits the Ethernet packet to the data-analysis target computer.

The Ethernet Tx block sends data packets through the same Ethernet connection as the PTP
blocks use to send PTP messages. To distinguish data packets from PTP messages, the model
assigns to the data packets Ethernet type hex2dec('0010'). This Ethernet type is different from
the default Ethernet type of PTP packets (hex2dec('88F7"')).

* Outport — For data logging purposes, the top-level model propagates the major signals to Outport
blocks.

For debugging purposes, the top-level model includes two real-time Scope blocks:

* Sensor Data — Displays the sensor data in a graphic scope.

* Sensor PTP Data — Displays the PTP time, PTP synchronization status, PTP state, and
synchronization delta of the data acquisition model.

Data Acquisition and Data Analysis Example Description

FPTP Cwer Ethernet
Bus: 5 Skt 0 Function: 0
Id: 1

|IEEE 1588 Ethernat1

—(D)
Sensor Out
Sensor Qut Target Scope
v Id: 1
Sensor Data
Senzor Out
e ELED
Sensor PTP Time Out
> Pack ¥ Data
Byte Packing Create Ethemet Packet Ethernet
Network Buffer ¥ Network Buffer Transmit
Packet 1d- 1
Sensor Sync Out
Ethemet Tx
Sansor PTP Time Out Length
Constant
Create Ethemnet Packat

Sensor PTP Time
Sensor Sync Status Out
double
P| double Sensor Sync Status i
Sync Type
FTF Clock-Data Subsystam
State » double » p| Tarost Scope
Sensor State Id: 2
State State Type
Sensor PTP Data
PTP
Read Protocol state State ’(4)
Sensor State Out
IEEE 1588 Sensor Int Time Cut -
Read Parameatar]
Sensor Int Time Cut

Time

PTP .

Synic Timer Interrupt Sensor Int Delta Out

Delta

IEEE 1588 Sync Execution Sensor Int Delta Cwt

Atomic Subsystem

The PTP timestamp must align as closely as possible with the data source. For better alignment, the
model wraps the sensor data block and the lower-level PTP blocks in an atomic subsystem:

» Sine Wave — Represents sensor data.

* IEEE 1588 Read Parameter — Generates the timestamp, configured as PTP Time
(nanosecond).

» IEEE 1588 Sync Status — Generates the synchronization status. When the PTP clock is
synchronized with the master PTP clock, the block output becomes 1.

18-15

18 Precision Time Protocol

18-16

EEEr—
% Sensor Data

| Sensor Out
Sine Wave
FTF
- F————
Read PTP time (nanmcond]ﬂme Time
Sensor PTP
Time Crut
IEEE 1588
Read Parameter2
PTP
Synchronization stafus S —F@
- Sync Status
Threshold: 10e-§ il Sensor Syne
Status Out
IEEE 1588
Sync Status

Data Analysis Application

The data analysis application is a PTP master node that gets sensor data from an emulator, a Sine
Wave block. The application gets reference data from an emulator, a Sine Wave block, and sensor
data from an Ethernet Rx block. The application calculates the difference between the reference data
and the sensor data.

Top-Level Model

The PTP initialization block and the blocks that receive and process the data are in the top-level
model:
» IEEE 1588 Ethernet — Configures the PTP network card clock as a master clock.

* JEEE 1588 Read Parameter — Shows when the PTP clock has been allocated as a master clock
(value 6). Configured as Read Protocol state.

« IEEE 1588 Sync Execution — Aligns the kernel clocks across multiple target computers. The block
output shows the difference between the following times:
* The PTP time at the real-time interrupt
* The nearest PTP time that is a multiple of the fundamental sample time

» Extract Ethernet Packet — Extracts the Ethernet packet that is carrying the sensor data.

* Byte Unpacking — Unpacks the sensor data, timestamp, and synchronization status from the
Ethernet packet.

e Sum — Calculates the difference between the sensor data and the reference data.

The Sum block provides input data for further processing. For example, you can plot the sensor
data, reference data, and difference against the timestamp to assess the real-time behavior. You
can also feed the difference data back through a control system to change an actuator setting at
the data acquisition site.

Data Acquisition and Data Analysis Example Description

* Outport — For data logging purposes, the top-level model propagates the major signals to Outport
blocks.

For debugging purposes, the top-level model includes four real-time Scope blocks:

+ Ref/Sensor Data — Displays the reference data and the sensor data together in a graphic
scope.

* Delta — Displays the difference between the reference data and the sensor data in a graphic
scope.

The Delta scope is configured with a long sample time. It captures long-period differences
between the sensor and reference data. If the frequency, phase, and amplitude differences are
constant, the scope displays a rectangular area. If the differences are periodic, the scope displays
a beat frequency.

* Ref PTP Data — Displays the PTP time, PTP synchronization status, PTP state, and
synchronization delta of the data analysis model.

* Sensor PTP Data — Displays the PTP time, PTP synchronization status, and synchronization
delta of the data acquisition model.

18-17

18 Precision Time Protocol

g

ensor Out

> 1)

Sansor Out

—— @

Data
Data #{ Unpack Sensor Time J
Sensor Tine Sensor Tme |
Target Scope
Dst f————p—] -7
Dst Tarm double prv—
Sync
Extract Ethemet Packet Sensor Sync TYDBS:.:lus Sensor PTP Data
) 1 —>—]
. ngs?ulueruEEhEm-El . twork Buffer Src
us: t: unciion: Sengor Sync
Id: 1 Sre Term Byta Unpacking 4’@
Type ————— Sansor Sync Out
IEEE 1588 Ethernet1 Type Term
Packet Length |———=]
Type Term1
Extract Ethernet Packet
Ref
»CO
Ref Out
Paciel Dut .
Feat 2 b
5 % Target Scope
- gl:l: 1 o
Real
Red Out >
Rel RefiSensor Data
Ref Time Cut Delta Cut
L . > Target Scope
Rl Tirme: Ref Time Dela W3
Delta
- bl
[Ref Syne double
Fet Sync Slatus
SyncType
Ref Syne Out -
Ref Sync Out
PTP Clock-Data Subsystem Rt State
» double > p| TargetScope
el Slate Id: 4
State Type
FTR Rel Stale Ref PTP Data
Read Protocol state Stats '@
Ref State Out
IEEE 1588 >
Read Parameter2 et Int Time
Ref Int Time
Time
PTP Rt Int Time
Sync Timer Interrupt
D o ot Deia o
Rel Int Della
IEEE 1588 Sync Execution -IEI
Ref Int Delta Cut

18-18

Data Acquisition and Data Analysis Example Description

Atomic Subsystem

The PTP timestamp must align as closely as possible with the Ethernet receiver. For better alignment,
the model wraps the blocks representing the reference data source and the lower-level PTP blocks in
an atomic subsystem:

* Sine Wave — Represents reference data.

* IEEE 1588 Read Parameter — Generates the timestamp, configured as PTP Time
(nanosecond).

« IEEE 1588 Sync Status — Generates the synchronization status. When the PTP clock is
synchronized with the master PTP clock, the block output becomes 1.

+ Ethernet Rx — Receives sensor data from the acquisition target computer. The configured block
filters out all packets except packets of Ethernet type hex2dec('0010'). The default Ethernet
type of PTP packets is hex2dec('88F7"').

Ethernet
Receive Metwork Buff »{_1
?S_E_'I'"E . Her Ethernat Packet D
: Packet Cut
Ethermat Fx
|-
> 2
hl..l Ref Data)
| Raf Cut
Sine Wave
PTF !
Read PTF time |:nE|nu::rsfan.'.-::nn-'_‘l]-I—”-m:'I Ref Time " @
Raf Time
IEEE 1588
Read Paramateri
PTP
Synchronization status 5 P —— "’@
Threshold: 10e-6 ¥ Ref Sync Cut
IEEE 1588
Sync Status

See Also

IEEE 1588 Ethernet | IEEE 1588 Read Parameter | IEEE 1588 Sync Execution | IEEE 1588 Sync
Status | open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples’, 'ex ptp sync sink'))) |
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex ptp sync_src')))

More About

. “Synchronize Timestamps Across Data-Gathering Network” on page 18-4

18-19

18 Precision Time Protocol

. “IEEE® 1588™ Precision Time Protocol - Execution Synchronization”

18-20

Troubleshoot Precision Time Protocol Configuration

Troubleshoot Precision Time Protocol Configuration

I want to resolve IEEE 1588 block precision time protocol (PTP) configuration problems.

What This Issue Means

To troubleshoot your model, first familiarize yourself with the PTP standard, and then with the
specialized requirements of the Simulink Real-Time implementation. For more information, see
“Precision Time Protocol” on page 18-2 and PTP “Prerequisites, Limitations, and Unsupported
Features” on page 18-24.

Try This Workaround

To identify PTP model or configuration problems, check for these issues.

PTP Block Configuration in Model

Configure all PTP nodes in a network with the same Delay measurement mechanism. If you
configure a slave node with a different setting from the master node, the slave node enters the
FAULTY state

Configure all PTP nodes in a network with the same Timescale or Arbitrary timescale epoch
value. If you configure the master and slave nodes with differing timescales, the representation of
time in time-of-day format differs for the two nodes.

Configure all nodes in the PTP networks with the same Announce interval and Announce
receipt timeout. Differing values of these parameters in a PTP network can lead to unpredictable
behavior.

Avoid using inherited sample time everywhere in your model. Inherited sample time occurs
throughout your model when you make the following settings:

* Fixed step size - auto in the Configuration Parameters dialog box
* Sample time - -1 in all of the blocks of your model.

The sample time that Simulink calculates can be greater than the PTP message transmission
intervals, resulting in an unusable model.

The PTP configuration subsystems include configuration blocks for the associated transport
protocol. If you use a separate Ethernet card for data transmission, include a separate network
configuration block. Assign it a Device ID different from the one already in use by the PTP
configuration block. Multiple network configuration blocks with the same Device ID cause a build
error.

The PTP Over Ethernet block creates PTP messages with Ether type set to hex2dec('88F7').
To use the same Ethernet card for PTP as for data transmission:

* In the Create Ethernet Packet block, set Ether type to a nonzero value that is different from
hex2dec('88F7"') (for example, hex2dec(‘0010").

* In the Ethernet Rx block, set Filter criteria to Specify types to match. Set Receive
these types to the value that you set in the Create Ethernet Packet block (for example,
[hex2dec('0010')1]).

If you include more than one slave node in the network, configure the master node to use the
standard PTP multicast address for transmitting messages. The master node must transmit the
same synchronization message to all the slaves.

18-21

18 Precision Time Protocol

18-22

Using the IEEE 1588 Sync Execution block to make measurements across multiple target
computers at the same simulation step can lead to a CPU overload. Also, the kernel interrupt clock
controller can shorten some time steps up to 10% of the model fundamental sample time.

If you get CPU overloads, consider decreasing the value of the Proportional gain parameter of
the IEEE 1588 Sync Execution block or increasing the sample time of your real-time application.

If you use the IEEE 1588 Sync Execution block in your model, configuring EtherCAT distributed
clocks in master shift mode in the same model produces a build error. To include IEEE 1588
synchronized execution and EtherCAT distributed clocks in the same model, use EtherCAT bus
shift mode.

PTP Synchronization Accuracy

The synchronization accuracy depends upon the value of Sync interval. The smaller the value,
the more accurate the synchronization. If your model fails to meet your required synchronization
accuracy, try decreasing the value of Sync interval.

You can use IEEE 1588 Sync Execution block to synchronize two PTP models with differing
fundamental sample times. Their execution is synchronous at a PTP time equal to the least
common multiple of the two rates.

PTP Faulty States

When a slave node enters the FAULTY state, look for one of these conditions:

* The slave node is configured with a different Delay measurement mechanism setting from
the master node setting.

* The slave node model sample time setting is greater than the master node Sync interval
setting.

* The slave node Announce interval setting is shorter than the master node Announce
interval setting.

+ The slave is not receiving a response from the master to delay request messages sent by the
slave. This behavior occurs, for example, if the slave node is configured to use a delay
measurement mechanism setting different from the master node setting.

If the master node fails to read a required timestamp from the Ethernet card due to contention for
the timestamp register, the transmission can fail. After a master node fails five consecutive times
to transmit a Follow Up, Delay Resp, Pdelay Resp, or Pdelay Resp Follow Up message to
its slave nodes, it enters the FAULTY state. Try these options:

* Reduce the number of slave nodes in the network.

* Shorten the sample time for the subsystem that represents the master node. The master node
cycles through the slave messages faster and reads the timestamp register more often.

* Increase the Min delay or pdelay request interval of the slave nodes. The slave nodes
generate messages less often.

* Connect a peer-to-peer transparent PTP clock between the master and slave nodes. Set Delay
measurement mechanism to Peer-delay for all of the nodes. The peer-to-peer transparent
PTP clock has a separate timestamp register for each port, taking the load off the master node.

For more information, see IEEE Std 1588-2008 Clause 10.

Troubleshoot Precision Time Protocol Configuration

See Also

IEEE 1588 Adjust Time | IEEE 1588 Create Message | IEEE 1588 Ethernet | IEEE 1588 Process
Message | [EEE 1588 Read Parameter | IEEE 1588 Real-Time UDP | IEEE 1588 Setup | IEEE 1588
Sync Error | IEEE 1588 Sync Execution | IEEE 1588 Sync Status

More About

. “Prerequisites, Limitations, and Unsupported Features” on page 18-24

. “Synchronize Timestamps Across Data-Gathering Network” on page 18-4
. “IEEE® 1588™ Precision Time Protocol - Execution Synchronization”

External Websites
. standards.ieee.org

18-23

https://standards.ieee.org

18 Precision Time Protocol

Prerequisites, Limitations, and Unsupported Features

18-24

The Simulink Real-Time implementation of PTP enforces specific requirements and limitations.

Prerequisites

PTP functionality is available only with a Speedgoat target computer. If you have not installed the
Speedgoat library, attempting to build a real-time application with PTP causes a build error.

IEEE 1588 protocol support includes:

* PTP over UDP is supported on Intel 82574 Ethernet cards and Intel i210 Ethernet cards.
* PTP over Ethernet is supported on Intel 82574 Ethernet cards.

To check that you have the required card, start your target computer. In the Command Window,
type:

tg = slrt;
getPCIInfo(tg, 'Ethernet')

Check that you see an entry like this entry:

Intel 82574L
Bus 5, Slot 0, IRQ 10
Ethernet controller
VendorID 0x8086, DeviceID 0x10d3, SubVendorID 0x15bd,
SubDeviceID 0x100a
Released in: R2010a
Notes: Intel 8254x Gigabit Ethernet series

Limitations

The PTP network card clock acts as PTP clock. Only one clock is allowed per node.

Run the model in Real-Time execution mode, not in Freerun mode or driven by an external
interrupt. In the latter two cases, the PTP message transmission intervals can violate the PTP
standard.

You can include only one PTP configuration block in a model. You can run only one real-time
application on a target computer. If you have installed multiple PTP Ethernet cards on your target
computer, you can use only one of them for PTP at a time. You can use the other PTP Ethernet
cards for non-PTP purposes.

The PTP message transmission intervals (Announce interval, Sync interval, and Min delay or
pdelay request interval) must be greater than the block sample time. Too small a message
transmission interval causes a model update error.

Simulink Real-Time can transmit PTP messages only at a multiple of the block sample time. If a
transmission interval is not a multiple of the block sample time, PTP transmits the messages at the
nearest multiple to the specified transmission time. As a best practice, specify all transmission
intervals as integral multiples of the block sample time.

The specification requires that a PTP node issue messages within +30% of the message
transmission intervals at least 90% of the time. To meet this requirement, specify message
transmission intervals (Announce interval, Sync interval, and Min delay or pdelay request
interval) at least three times the base sample time.

Prerequisites, Limitations, and Unsupported Features

The following factors limit accuracy:

* Network protocol stack delay fluctuation

* Network technology component delay fluctuations (switches, routers)
* Clock timestamp accuracy

* Clock oscillator stability

Use components that minimize these factors. For example, you can use a transparent or boundary
PTP clock to increase synchronization accuracy.

* A transparent PTP clock tracks the amount of time a PTP message takes to go through the
device. It passes that information to nodes receiving the message.

* A boundary PTP clock has multiple PTP ports that can act as a master clock or a slave clock.

Some systems require a PTP time source that is traceable to an International Atomic Time (TAI)
clock, such as a GPS signal. To support traceability, acquire a third-party grandmaster PTP clock
that provides this capability. In that case, a Simulink Real-Time target computer running PTP acts
only as a slave clock.

Unsupported Features

Simulink Real-Time supports only PTP version 2, as defined in IEEE Std 1588-2008. If a Simulink
Real-Time PTP node receives a PTP version 1 message as defined in IEEE Std 1588-2002, it
ignores it.

The Simulink Real-Time implementation of PTP does not support the following functionality
defined in IEEE Std 1588-2008:
* PTP variance computation, as described in IEEE Std 1588-2008 Clause 7.6.3.

* PTP nodes configured as one-step PTP clocks, as described in IEEE Std 1588-2008 Clause
3.1.21.

You can configure the master node as a two-step clock only, as described in IEEE Std
1588-2008 Clause 3.1.47.

* PTP management messages, as described in IEEE Std 1588-2008 Clause 15.

A Simulink Real-Time PTP node cannot transmit a PTP management message. When a Simulink
Real-Time PTP node receives a PTP management message, it ignores it.

+ PTP signaling messages, as described in IEEE Std 1588-2008 Clause 13.12.

A Simulink Real-Time PTP node cannot transmit a PTP signaling message. When a Simulink
Real-Time PTP node receives a PTP signaling message, it ignores it.

* Optional features, as described in IEEE Std 1588-2008 Clause 16 and Clause 17.

See Also

Related Examples

“Troubleshoot Precision Time Protocol Configuration” on page 18-21

18-25

Precision Time Protocol Blocks

19 Precision Time Protocol Blocks

19-2

IEEE 1588 Real-Time UDP

Execute IEEE 1588 Precision Time Protocol
Library: Simulink Real-Time / IEEE 1588

PTF Over Real-Time UDP
Bus: 0 Slot: O Function: 0
Id: 1

Description

IEEE 1588 Real-Time UDP executes the PTP protocol, using UDP to send and receive the protocol
messages. The block communicates with the corresponding blocks on the other target computers,
determines the time offset that synchronizes them, and adjusts the time offset.

Parameters
General

Local IP address — Select whether to use host-target connection for PTP
Specify | Use Host-Target connection

Select Specify to set individual parameters for the PTP interface. Select Use Host-Target connection
to use the host-target for the PTP interface.

Programmatic Use
Block Parameter: IpSource

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: PciBus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: PciFunction

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

IEEE 1588 Real-Time UDP

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample time

Network Parameters

IP address of port — IP address of PTP clock board
X. X. X. X

IP address of the Ethernet board, or node, carrying the PTP clock.

The addresses 0.0.0.0 and 255.255.255. 255 are invalid IP addresses.

Programmatic Use
Block Parameter: IpAddress

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x.x.x.x

Mask that designates a logical subdivision of a network.

Programmatic Use
Block Parameter: SubnetMask

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

The gateway must be within the network.

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.

Programmatic Use
Block Parameter: Gateway

Source IP address of receive packets (set to 0.0.0.0 to receive all) —IP
address in receive blocks
0.0.0.0 (default) | x.x.x.x

IP address in UDP Receive blocks. The default value (0.0.0.0) specifies that the node is to receive
all packets sent to the ports assigned to PTP messages (ports 319 and 320).

Use a specific value for one-to-one communication. If the node is a master PTP clock node, use a
specific value only if exactly one slave is connected to the master clock node.

The address 255.255.255.255 is an invalid IP address.

Programmatic Use
Block Parameter: Receivel

Destination IP address of transmit packets — IP address in transmit blocks
Standard PTP Multicast (224:0:1:129, 224:0:0:107) (default) | x.x.x.x

IP address in UDP Transmit blocks. Specifies the IP address of the other PTP computers or devices to
which to send the PTP packets. Select one of:

19-3

19 Precision Time Protocol Blocks

19-4

* Standard PTP Multicast (224:0:1:129, 224:0:0:107) (default) — Default standard
multicast IP address assigned to PTP. If you select this option, the PTP packets are broadcast to all
computers listening on the PTP ports (ports 319 and 320). The destination IP addresses are:

e 224.0.1.129 for non-peer-delay measurement mechanism messages (Announce, Sync,
Follow up, Delay Req, Delay Resp)

¢ 224.0.0.107 for peer-delay measurement mechanism messages (Pdelay Req,
Pdelay Resp, Pdelay Resp Follow up)

* Specify — Explicitly specify the destination IP address.
Selecting Specify makes the Specify destination IP address parameter visible.

Programmatic Use
Block Parameter: dest ip select

Specify Destination IP address — IP address of transmit packets
255.255.255.255 (default) | x. x.x.x

The default value (255.255.255.255) specifies that the node is to broadcast the packets to all
listening nodes of the network. Use a specific value for one-to-one communication. If the node is a
master PTP clock node, use a specific value only if exactly one slave is connected to the master clock
node.

To make this parameter visible, set Destination IP address of transmit packets to Specify.

Programmatic Use
Block Parameter: custom dest ip addr

Clock Parameters

Timescale (epoch) — Origin point of the PTP timescale
PTP (1970-01-01) (default) | GPS (1980-06-01) | NTP (1900-01-01) | Specify

Specify the origin point of the PTP timescale. Select one of:

* PTP (1970-01-01) — Precision Time Protocol standard epoch, starting January 1, 1970.

* GPS (1980-06-01) — Global Positioning System standard epoch, starting June 1, 1980.

* NTP (1900-01-01) — Network Time Protocol standard epoch, starting January 1, 1900.

» Specify — Explicitly specify the timescale epoch.

Selecting Specify makes the Arbitrary timescale epoch (yyyy mm dd hh) parameter visible.

Programmatic Use
Block Parameter: timescale

Arbitrary timescale epoch [yyyy mm dd hh] — Explicit origin point for PTP timescale
[1970 01 01 00O] (default) | [yyyy mm dd hh]

Specify the origin point for the PTP timescale, in year, month, day, and hour.

To make this parameter visible, set Timescale (epoch) to Specify.

Programmatic Use
Block Parameter: epoch

IEEE 1588 Real-Time UDP

Delay measurement mechanism — Method of measuring link delays
Request-response (default) | Peer-delay

Specify the method of measuring link delays. Configure all PTP network nodes to use the same link
delay measurement mechanism.

For more information, see IEEE Std Clause 7.5.4.

Programmatic Use
Block Parameter: delay measure

Slave only — Node that cannot be allocated as master PTP clock
off (default) | on

When you select this check box, you cannot allocate the PTP Ethernet card that this block represents
as a master PTP clock.

In Slave only mode, the values of the advanced parameters (Priority 1, Clock class, Clock
accuracy, and Priority 2) are set to their highest values. When the parameters have these settings,
all of the other nodes must have the same configuration. If a node has a different configuration, the
Best Master Clock Algorithm (BMCA) cannot allocate the node as best master clock. If the BMCA
selects a Slave only node as best clock, the node remains in the LISTENING state.

Programmatic Use
Block Parameter: slave only

Show advanced configuration parameters — Enable low-level PTP configuration
parameters
off (default) | on

For more information, see IEEE Std 1588-2008.

Selecting this check box makes advanced configuration parameters visible: Domain number,
Current UTC offset, Priority 1, Clock class, Clock accuracy, and Priority 2.

Programmatic Use
Block Parameter: enable advanced config

Domain number — Domain number of PTP network
0 (default) | 0-127

Specify the domain number of the PTP network to which the node belongs.

A Simulink Real-Time PTP node can belong to only one PTP domain at a given time. If the node
receives a PTP message with a different domain number, it ignores it. For more information, see IEEE
Std Clause 7.1.

To make this parameter visible, select the Show advanced configuration parameters check box.

Programmatic Use
Block Parameter: domain num

Current UTC offset — Current offset from Coordinated Universal Time
35 (default) | integer

The current UTC offset, in seconds.

19-5

19 Precision Time Protocol Blocks

19-6

If you specify a nonzero value, that value is considered valid. The UTCOffsetValid flag is set to
true. Otherwise, the flag is set to false. For more information, see IEEE Std 1588-2008 Clause
7.2.3.

To make this parameter visible, select the Show advanced configuration parameters check box.

Programmatic Use
Block Parameter: utc offset

Priority 1 — Priority of PTP node
128 (default) | 0-255

Specify an integer value encoding the priority of the PTP node in the network. When the value is 0,
the node has the highest priority. When it is 255, the node has the lowest priority.

To assess the quality of two PTP clocks, the Best Master Clock Algorithm compares the following
parameters, in order:

Priority 1

N =

Clock class
3 Clock accuracy
4 Priority 2

For each parameter, the algorithm selects the clock with the smaller value as the best clock. If all four
parameters are equal for both clocks, the algorithm compares the MAC addresses of the nodes.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.2.

To make this parameter visible, select the Show advanced configuration parameters check box.

Programmatic Use
Block Parameter: priorityl

Clock class — Clock class designator
248 (default) | 0-255

Specify a nonreserved integer value. If Clock class is less than 128, the node cannot enter the
SLAVE state. If Clock class is less than 128 and the node is not selected as the best clock, the node
enters the PASSIVE state.

If you specify a reserved integer value, the block produces an error during model update. For more
information, see IEEE Std 1588-2008 Clause 7.6.2.4. For a list of reserved and nonreserved Clock
class values, see IEEE Std 1588-2008 Table 5.

To make this parameter visible, select the Show advanced configuration parameters check box.

Programmatic Use
Block Parameter: clock class

Clock accuracy — Accuracy code for clock
hex2dec('FE") (default) | 0—-254

Specify a nonreserved integer value. For more information, see IEEE Std 1588-2008 Clause 7.6.2.5.
For a list of reserved and nonreserved Clock accuracy values, see IEEE Std 1588-2008 Table 6.

To make this parameter visible, select the Show advanced configuration parameters check box.

IEEE 1588 Real-Time UDP

Programmatic Use
Block Parameter: clock accuracy

Priority 2 — Secondary priority of PTP node
128 (default) | 0255

Specify secondary priority of PTP node. When the value is 0, the node has the highest priority. When
it is 255, the node has the lowest priority.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.3.

To make this parameter visible, select the Show advanced configuration parameters check box.

Programmatic Use
Block Parameter: priority2

Time Intervals

Announce interval (second) — Period of master node Announce message
2 (default) | numeric

The period, in seconds, of an Announce message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.8.

Programmatic Use
Block Parameter: announce interval

Sync interval (second) — Period of master node Sync message
0.1 (default) | numeric

The period, in seconds, of a Sync message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.9.

Programmatic Use
Block Parameter: sync_interval

Min delay or pdelay request interval (second) — Period of slave node request
message
0.1 (default) | numeric

Period of delay request message or of peer-delay request message transmitted by a node in the slave
state. When the delay measurement mechanism is Request-response, the block transmits delay
request messages. When the mechanism is Peer-delay, it transmits peer-delay request messages.

For more information, see IEEE Std 1588-2008 Clauses 9.5.11 and 9.5.13.

Programmatic Use
Block Parameter: min pdelay req interval

Announce receipt timeout (in announce intervals) — Timeout for Announce message
response
3 (default) | integer

Specifies the number of announce intervals a node not in the master state has to wait without
receiving an announce message. After the timeout passes, the node enters the master state.

19-7

19 Precision Time Protocol Blocks

For more information, see IEEE Std 1588-2008 Clause 9.2.6.11.

Programmatic Use
Block Parameter: announce receipt timeout

See Also
getPCIInfo

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

Introduced in R2015b

19-8

https://standards.ieee.org

IEEE 1588 Ethernet

IEEE 1588 Ethernet

Execute IEEE 1588 Precision Time Protocol
Library: Simulink Real-Time / IEEE 1588

PTP Over Ethernet
Bus: 0 Shot: O Functicn: 0
Id: 1

Description

IEEE 1588 Ethernet executes the PTP protocol, using raw Ethernet to send and receive the protocol
messages. The block communicates with the corresponding blocks on the other target computers,
determines the time offset that synchronizes them, and adjusts the time offset.

Parameters

General

Device ID — Ethernet board identifier
1-8

From the list, select a unique number to identify the Ethernet board.

Programmatic Use
Block Parameter: ID

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: PciBus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: PciFunction

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

19-9

19 Precision Time Protocol Blocks

19-10

Programmatic Use
Block Parameter: sample time

Network Parameters

Source MAC address — MAC address of Ethernet card for message source
EEPROM (default) | Specify

Source MAC address in Ethernet transport protocol. From the list, select:

* EEPROM — Allow the block to get the Ethernet card MAC address that is built into the Ethernet
card. Use this option if you use separate Ethernet connections to transmit data and to synchronize
PTP clocks.

* Specify — Explicitly specify the source MAC address. Use this option if both of these conditions
are true:
* You use the same Ethernet connection to transmit data as you use to synchronize PTP clocks.
* You do not know the built-in MAC address of the Ethernet card.

Selecting Specify makes the Specify source MAC address parameter visible.

Programmatic Use
Block Parameter: AddressSource

Specify source MAC address — Explicit MAC address of Ethernet card for message source
00:00:00:00:00:00 (default) | xx:xx:xx:XxX:XX:XX

Enter the MAC address for the Ethernet card. Use the MAC address that is built into the Ethernet
card or an arbitrary MAC address that is unique within the PTP network. Do not use one of the
standard PTP multicast MAC addresses.

To make this parameter visible, set Source MAC address to Specify.

Programmatic Use
Block Parameter: MAC

Destination MAC address — MAC address of Ethernet card for message destination
Standard PTP Multicast (01:1B:19:00:00:00, 01:80:C2:00:00:0E) (default) | Specify

Destination MAC address in Ethernet transport protocol. Select one of:

* Standard PTP Multicast (01:1B:19:00:00:00, 01:80:C2:00:00:0E) — Default
multicast MAC address assigned to the PTP protocol. If you select this option, the destination
MAC addresses are:

* 01:1B:19:00:00:00 for non-peer-delay measurement mechanism messages (Announce,
Sync, Follow up, Delay Req, Delay Resp)

* 01:80:C2:00:00:00:0OE for peer-delay measurement mechanism messages (Pdelay Regq,
Pdelay Resp, Pdelay Resp Follow up)

* Specify — Explicitly specify the destination MAC address.

You do not have to specify a source MAC address. The block uses the unique MAC address of the PTP
Ethernet card.

Selecting Specify makes the Specify destination MAC address parameter visible.

IEEE 1588 Ethernet

Programmatic Use
Block Parameter: dest mac

Specify destination MAC address — Explicit MAC address of Ethernet card for message
destination
00:00:00:00:00:00 (default) | xx:xx:xX: XX XX XX

Specify a MAC address for the message destination. Use this option for Slave only nodes. Specify the
MAC address of the master node Ethernet card. The master node uses the standard PTP multicast
MAC address to transmit messages to all slave nodes.

To make this parameter visible, set Destination MAC address to Specify.

Programmatic Use
Block Parameter: mac_select

Clock Parameters

Timescale (epoch) — Origin point of the PTP timescale
PTP (1970-01-01) (default) | GPS (1980-06-01) | NTP (1900-01-01) | Specify

Specify the origin point of the PTP timescale. Select one of:

* PTP (1970-01-01) — Precision Time Protocol standard epoch, starting January 1, 1970.

* GPS (1980-06-01) — Global Positioning System standard epoch, starting June 1, 1980.

* NTP (1900-01-01) — Network Time Protocol standard epoch, starting January 1, 1900.

» Specify — Explicitly specify the timescale epoch.

Selecting Specify makes the Arbitrary timescale epoch (yyyy mm dd hh) parameter visible.

Programmatic Use
Block Parameter: timescale

Arbitrary timescale epoch [yyyy mm dd hh] — Explicit origin point for PTP timescale
[1970 01 01 00] (default) | [yyyy mm dd hh]

Specify the origin point for the PTP timescale, in year, month, day, and hour.

To make this parameter visible, set Timescale (epoch) to Specify.

Programmatic Use
Block Parameter: epoch

Delay measurement mechanism — Method of measuring link delays
Request-response (default) | Peer-delay

Specify the method of measuring link delays. Configure all PTP network nodes to use the same link
delay measurement mechanism.

For more information, see IEEE Std Clause 7.5.4.

Programmatic Use
Block Parameter: delay measure

Slave only — Node that cannot be allocated as master PTP clock
off (default) | on

19-11

19 Precision Time Protocol Blocks

19-12

When you select this check box, you cannot allocate the PTP Ethernet card that this block represents
as a master PTP clock.

In Slave only mode, the values of the advanced parameters (Priority 1, Clock class, Clock
accuracy, and Priority 2) are set to their highest values. When the parameters have these settings,
all of the other nodes must have the same configuration. If a node has a different configuration, the
Best Master Clock Algorithm (BMCA) cannot allocate the node as best master clock. If the BMCA
selects a Slave only node as best clock, the node remains in the LISTENING state.

Programmatic Use
Block Parameter: slave only

Show advanced configuration parameters — Enable low-level PTP configuration
parameters
off (default) | on

For more information, see IEEE Std 1588-2008.

Selecting this check box makes advanced configuration parameters visible: Domain number,
Current UTC offset, Priority 1, Clock class, Clock accuracy, and Priority 2.

Programmatic Use
Block Parameter: enable advanced config

Domain number — Domain number of PTP network
0 (default) | 0-127

Specify the domain number of the PTP network to which the node belongs.

A Simulink Real-Time PTP node can belong to only one PTP domain at a given time. If the node
receives a PTP message with a different domain number, it ignores it. For more information, see IEEE
Std Clause 7.1.

To make this parameter visible, select the Show advanced configuration parameters check box.

Programmatic Use
Block Parameter: domain_num

Current UTC offset — Current offset from Coordinated Universal Time
35 (default) | integer

The current UTC offset, in seconds.

If you specify a nonzero value, that value is considered valid. The UTCOffsetValid flag is set to
true. Otherwise, the flag is set to false. For more information, see IEEE Std 1588-2008 Clause
7.2.3.

To make this parameter visible, select the Show advanced configuration parameters check box.

Programmatic Use
Block Parameter: utc offset

Priority 1 — Priority of PTP node
128 (default) | 0—255

Specify an integer value encoding the priority of the PTP node in the network. When the value is 0,
the node has the highest priority. When it is 255, the node has the lowest priority.

IEEE 1588 Ethernet

To assess the quality of two PTP clocks, the Best Master Clock Algorithm compares the following
parameters, in order:

1 Priority 1

2 Clock class

3 Clock accuracy
4 Priority 2

For each parameter, the algorithm selects the clock with the smaller value as the best clock. If all four
parameters are equal for both clocks, the algorithm compares the MAC addresses of the nodes.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.2.

To make this parameter visible, select the Show advanced configuration parameters check box.

Programmatic Use
Block Parameter: priorityl

Clock class — Clock class designator
248 (default) | 0—255

Specify a nonreserved integer value. If Clock class is less than 128, the node cannot enter the
SLAVE state. If Clock class is less than 128 and the node is not selected as the best clock, the node
enters the PASSIVE state.

If you specify a reserved integer value, the block produces an error during model update. For more
information, see IEEE Std 1588-2008 Clause 7.6.2.4. For a list of reserved and nonreserved Clock
class values, see IEEE Std 1588-2008 Table 5.

To make this parameter visible, select the Show advanced configuration parameters check box.

Programmatic Use
Block Parameter: clock class

Clock accuracy — Accuracy code for clock
hex2dec('FE') (default) | 0—254

Specify a nonreserved integer value. For more information, see IEEE Std 1588-2008 Clause 7.6.2.5.
For a list of reserved and nonreserved Clock accuracy values, see IEEE Std 1588-2008 Table 6.

To make this parameter visible, select the Show advanced configuration parameters check box.

Programmatic Use
Block Parameter: clock accuracy

Priority 2 — Secondary priority of PTP node
128 (default) | 0-255

Specify secondary priority of PTP node. When the value is 0, the node has the highest priority. When
it is 255, the node has the lowest priority.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.3.

To make this parameter visible, select the Show advanced configuration parameters check box.

19-13

19 Precision Time Protocol Blocks

19-14

Programmatic Use
Block Parameter: priority?2

Time Intervals

Announce interval (second) — Period of master node Announce message
2 (default) | numeric

The period, in seconds, of an Announce message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.8.

Programmatic Use
Block Parameter: announce interval

Sync interval (second) — Period of master node Sync message
0.1 (default) | numeric

The period, in seconds, of a Sync message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.9.

Programmatic Use
Block Parameter: sync_interval

Min delay or pdelay request interval (second) — Period of slave node request
message
0.1 (default) | numeric

Period of delay request message or of peer-delay request message transmitted by a node in the slave
state. When the delay measurement mechanism is Request-response, the block transmits delay
request messages. When the mechanism is Peer-delay, it transmits peer-delay request messages.

For more information, see IEEE Std 1588-2008 Clauses 9.5.11 and 9.5.13.

Programmatic Use
Block Parameter: min pdelay req interval

Announce receipt timeout (in announce intervals) — Timeout for Announce message
response
3 (default) | integer

Specifies the number of announce intervals a node not in the master state has to wait without
receiving an announce message. After the timeout passes, the node enters the master state.

For more information, see IEEE Std 1588-2008 Clause 9.2.6.11.

Programmatic Use
Block Parameter: announce receipt timeout

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

https://standards.ieee.org

IEEE 1588 Ethernet

Introduced in R2015b

19-15

19 Precision Time Protocol Blocks

19-16

IEEE 1588 Read Parameter

Output Precision Time Protocol status parameter value
Library: Simulink Real-Time / IEEE 1588

PTP
Read PTFP time (nanoseco‘“ﬁﬁe 4

Description

Read the parameter that you select and send its value to the block output. The block output name
changes based on the parameter that you select.

Ports
Output Arguments

Time — Time into epoch, in nanoseconds
double | [uint]

Current number of nanoseconds, counting from the beginning of the epoch.
When Parameter to read is:

* PTP time (nanosecond) — The output is a double.
* PTP time (nanosecond vector) — The outputis a uint vector.
To compute the difference in nanoseconds between two vector time values, pass both time values

to the Time Stamp Delta block. To convert a single time value to nanoseconds, pass one time value
to a Time Stamp Delta block and ground the other input.

Dependency

When Parameter to read is PTP time (nanosecond) or PTP time (nanosecond vector),
output Time is visible.

When you select the Time at block start check box, the value is measured at the beginning of block
execution. When you clear the Time at block start check box, the value is measured at the end of
block execution.

Date — Current date and time
[year, month, day of week, day of month, hour, minute, second, millisecond]

Current time in time-of-day format. The value is a vector of size 8, data type uint16, containing:
year, month (1-12), day of week (0-6), day of month (0-31), hour (0-23), minute (0-59), second (0-
59), and millisecond (0-999).

Dependency
When Parameter to read is PTP time (time-of-day), output Date is visible.

0ffset — Offset from master PTP clock, in nanoseconds
double

IEEE 1588 Read Parameter

Last computed offset from master PTP clock node, in nanoseconds.

Dependency
When Parameter to read is 0ffset from Master, output Offset is visible.

Pdelay — Mean path delay, in nanoseconds
double

Last computed mean path delay, in nanoseconds.

Dependency
When Parameter to read is Path delay, output PDelay is visible.

State — Current state of protocol
1-9

Current state of the protocol state machine. Returns one of:

* 1 = INITIALIZING — Initializing data set and communication protocol

* 2 = FAULTY — Occurrence of serious fault

* 3 = DISABLED — Management message disables the node

* 4 = LISTENING — Waiting for announce receipt timeout period to expire

+ 5 =PRE MASTER — Intermediate state before moving to MASTER state after execution of Best
Master Clock Algorithm (BMCA)

* 6 = MASTER — Node is the master PTP clock node

* 7 = PASSIVE — BCMA designates node as passive

* 8 = UNCALIBRATED — Intermediate state before moving to SLAVE state after execution of BMCA
* 9 = SLAVE — Node is a slave node

For more information, see IEEE Std 1588-2008 Clause 9.2.5.
Dependency

When Parameter to read is Protocol state, output State is visible.

Parameters

Parameter to read — Parameter to display at output
PTP time (nanosecond) (default) | PTP time (nanosecond vector) | PTP time (time-of-
day) | Offset from Master |Path delay|Protocol state

Specify parameter to read and make corresponding output port visible. Select one of:

* PTP time (nanosecond) — Reveals port Time and parameter Time at block start

* PTP time (nanosecond vector) — Reveals port Time and parameter Time at block start
* PTP time (time-of-day) — Reveals port Date

+ (Offset from Master — Reveals port Offset

* Path delay — Reveals port PDelay

19-17

19 Precision Time Protocol Blocks

19-18

* Protocol state — Reveals port State

Programmatic Use
Block Parameter: param

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample time

Time at block start — Place of time value in execution
0 (default) | 1

When you select this check box, the Time output contains the time at the beginning of block
execution. When you clear this check box (the default), the Time output contains the time at the end
of block execution.

Setting Parameter to read to PTP time (nanosecond) makes this check box visible.

Programmatic Use
Block Parameter: enable read precision

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

Introduced in R2015b

IEEE 1588 Sync Execution

IEEE 1588 Sync Execution

Synchronize model execution to Precision Time Protocol clock
Library: Simulink Real-Time / IEEE 1588

Time [

PTP
Sync Timer Interrupt
Delta pr

Description

When the PTP time is a multiple of the fundamental step size of the model, this block causes a real-
time interrupt.

Make measurements across multiple target computers at the same time step by using the IEEE 1588
Sync Execution block. The block uses a control loop to adjust the step size toward the synchronization
objective. During this process, the control loop decreases or increases the step size. When the control
loop decreases the step size, the CPU can become overloaded. You can decrease the maximum
adjustment value by decreasing the Proportional gain parameter. The upper bound of the
adjustment value is 10% of the model fundamental sample time, regardless of the Proportional gain
value.

Use this block in every model that requires synchronized execution, whether it is a PTP master or
slave model. To use this block, in the Simulink Real-Time options, set the real-time interrupt source to
Timer. As a best practice, for all models, use the same fundamental sample time. Set the sample time
in this block to that fundamental sample time.

If you use the IEEE 1588 Sync Execution block in your model, configuring EtherCAT distributed
clocks in master shift mode in the same model produces a build error. To include IEEE 1588

synchronized execution and EtherCAT distributed clocks in the same model, use EtherCAT bus shift
mode.

Ports
Output

Time — PTP time of real-time interrupt
scalar

PTP time value at which the interrupt occurs, in seconds.

Data Types: double

Delta — Difference between interrupt time and nearest PTP sample time
scalar

Current difference, in seconds, between the PTP time at the interrupt and the nearest PTP time that
is a multiple of the fundamental sample time.

Data Types: double

19-19

19 Precision Time Protocol Blocks

19-20

Parameters

Proportional gain — Proportional gain of the kernel clock adjustment controller
0.1 (default) | double

The current value of output port Delta is multiplied by the proportional gain to get the first part of the
controller output.

Programmatic Use
Block Parameter: Gain

Low pass filter pole — Pole of the low-pass filter of the kernel clock adjustment
controller
0.7 (default) | double

The low-pass filter is a discrete-time, first-order transfer function. The low-pass filter tracks the rate
difference between the kernel and PTP clocks and provides the second part of the controller output.
Programmatic Use

Block Parameter: PoleZ

PTP clock synchronization threshold (seconds) — Threshold value at which the
controller begins to adjust the kernel clock
le-3 (default) | double

The effect of this value depends on the PTP node state:

* Slave node — The controller starts the kernel adjustment when the slave PTP clock offset from the
master clock is less than or equal to this parameter.

* Master node — The controller starts the kernel clock adjustment immediately after it enters the
master state, regardless of the value of this parameter.

It is a best practice to start adjusting the kernel clock only when the PTP clock is stable. Keep this
value less than or equal to a millisecond.

Programmatic Use
Block Parameter: offset threshold

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample time

See Also
Transfer Fcn First Order

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

https://standards.ieee.org

IEEE 1588 Sync Execution

Introduced in R2016a

19-21

19 Precision Time Protocol Blocks

19-22

IEEE 1588 Sync Status

Output synchronization status of Precision Time Protocol
Library: Simulink Real-Time / IEEE 1588

PTP
Synchronization status 5
Threshold: 10e-6

Description
When the absolute value of the offset from the master PTP clock is less than or equal to the threshold,

the output port value is true. If the node is selected as the master clock, the output port value
becomes true when it enters the MASTER state.

Ports
Output Arguments

S — Detects if block is synchronized with master PTP clock
true | false

When the absolute value of the offset from the master PTP clock is less than or equal to the specified
threshold, returns true.

Parameters

Offset threshold (second) — Synchronization threshold value
10e-6 (default) | double

Threshold value, in seconds, from which the node is considered well synchronized to the master PTP
clock node. The default value is 10 ps. The minimum allowed value is 1 ps.

Programmatic Use
Block Parameter: offset threshold

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample time

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

https://standards.ieee.org

IEEE 1588 Sync Status

Introduced in R2015b

19-23

19 Precision Time Protocol Blocks

19-24

IEEE 1588 Setup

Configure node for Precision Time Protocol execution
Library: Simulink Real-Time / IEEE 1588

Description

Sets up the Precision Time Protocol for the specified transport protocol (Ethernet or UDP). Exposes
as outputs the state of the protocol, the delay measurement mechanism, and triggers for sending
messages.

The PTP internal block descriptions are for informational purposes only. You cannot use these blocks
by themselves in a model. The subsystem mask controls the block parameters. Do not edit the
parameters directly.

Ports
Output

State — Current state
1..09

Current state of the protocol state machine. Returns one of:

* 1 = INITIALIZING — Initializing data set and communication protocol

* 2 = FAULTY — Occurrence of serious fault

* 3 = DISABLED — Management message disables the node

* 4 = LISTENING — Waiting for announce receipt timeout period to expire

« 5 =PRE MASTER — Intermediate state before moving to MASTER state after execution of Best
Master Clock Algorithm (BMCA)

* 6 = MASTER — Node is the master PTP clock node

» 7 = PASSIVE — BCMA designates node as passive

* 8 = UNCALIBRATED — Intermediate state before moving to SLAVE state after execution of BMCA
* 9 = SLAVE — Node is a slave node

For more information, see IEEE Std 1588-2008 Clause 9.2.5.

DM — Delay measurement value
1..2

Value of Delay measurement mechanism. Returns one of:

IEEE 1588 Setup

* 1 =Request-response
* 2 =Peer-delay

ST — Synchronization trigger value
false | true

Value of synchronization trigger, true every Sync interval

AT — Announce trigger
false | true

Value of announce trigger, true every Announce interval

DT — Delay request trigger
false | true

Value of delay request trigger, true every Min delay or pdelay request interval

Parameters

General

Device ID — Device ID
1..8

From the list, select a unique number to identify the Ethernet board. Select the same Device ID as
the one that you selected for the protocol configuration block.

Programmatic Use
Block Parameter: ID

Transport protocol — Message protocol
Raw Ethernet | Real-Time UDP

The network protocol for communicating messages. Select one of Real-Time UDP and Raw
Ethernet.

Programmatic Use
Block Parameter: protocol

IP address — Ethernet card IP address
0.0.0.0

IP address of Ethernet card, or node, represented by the PTP Setup block.

Programmatic Use
Block Parameter: IpAddress

Board time increment value — PTP clock increment
double

Value that changes the PTP clock.

Programmatic Use
Block Parameter: time inc

19-25

19 Precision Time Protocol Blocks

PCI bus — Ethernet card bus
double

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: PciBus

PCI slot — Ethernet card slot
double

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

Time Properties

Time source — PTP clock source
Precise System Time | Tick Counter | Ethernet board

Source of PTP clock signal. Select one of:

* Precise System Time — Synchronization of system time without hardware timestamp
* Tick Counter — Synchronization of tick counter read without hardware timestamp
* Ethernet board — Clock on PTP Ethernet board

Programmatic Use
Block Parameter: time source

Timescale (epoch) — PTP timescale origin
PTP (1970-01-01) | GPS (1980-06-01) | NTP (1900-01-01) | Specify

Specify origin point of the PTP timescale. Select one of:

* PTP (1970-01-01 — Precision Time Protocol standard epoch, starting January 1, 1970.
* GPS (1980-06-01) — Global Positioning System standard epoch, starting June 1, 1980.
* NTP (1900-01-01) — Network Time Protocol standard epoch, starting January 1, 1900.

* Specify — Selecting this value makes the Arbitrary timescale epoch (yyyy mm dd hh)
parameter visible.

Programmatic Use
Block Parameter: timescale

Arbitrary timescale epoch (yyyy mm dd hh) — Arbitrary PTP timescale origin
vector

Specify origin point for PTP timescale, in year, month, day, and hour.

When Timescale (epoch) is Specify, Arbitrary timescale epoch (yyyy mm dd hh) is visible.

Programmatic Use
Block Parameter: epoch

Delay measurement mechanism — Link delay measurement method
Request-response | Peer-delay

19-26

IEEE 1588 Setup

Method of measuring link delays. Select one of Request-response and Peer-delay.
In a PTP network, you must configure all nodes to use the same link delay measurement mechanism.

For more information, see IEEE Std 1588-2008 Clause 7.5.4.

Programmatic Use
Block Parameter: delay measure

Sample time (-1 for inherited) — Sample time
-1

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample time

Slave only — Slave only mode
off | on

When you select this check box, you cannot allocate the PTP Ethernet card that this block represents
as a master PTP clock.

In Slave only mode, the values of the advanced parameters (Priority 1, Clock class, Clock
accuracy, and Priority 2) are set to their highest values. When the parameters have these settings,
the Best Master Clock Algorithm (BMCA) cannot choose the node as best master clock unless all of
the other nodes have the same configuration. If the BMCA selects a Slave only node as best clock,
the node remains in the LISTENING state.

Programmatic Use
Block Parameter: slave only

Time Intervals

Announce interval (second) — Announce message period
double

The period, in seconds, of an Announce message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.8.

Programmatic Use
Block Parameter: announce_interval

Sync interval (second) — Sync message period
double

The period, in seconds, of a Sync message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.9.

Programmatic Use
Block Parameter: sync_interval

Min delay or pdelay request interval (second) — Delay request period
double

19-27

19 Precision Time Protocol Blocks

19-28

Period of delay request message or of peer-delay request message transmitted by a node in the slave
state. When the delay measurement mechanism is Request-response, the block transmits delay
request messages. When the mechanism is Peer-delay, it transmits peer-delay request messages.

For more information, see IEEE Std 1588-2008 Clauses 9.5.11 and 9.5.13.

Programmatic Use
Block Parameter: min pdelay req interval

Announce receipt timeout (in announce intervals) — Announce intervals until
timeout
double

Specifies the number of announce intervals a node not in the master state has to wait without
receiving an announce message before the node enters the master state.

For more information, see IEEE Std 1588-2008 Clause 9.2.6.11.

Programmatic Use
Block Parameter: announce receipt timeout

Advanced

Domain number — PTP network domain of node
integer

Specify the domain number of the PTP network to which the node belongs.

A Simulink Real-Time PTP node can belong to only one PTP domain at a given time. If the node
receives a PTP message with a different domain number, it ignores it. For more information, see IEEE
Std 1588-2008 Clause 7.1.

When you select the Show advanced configuration parameters check box, Domain number is
visible.

Programmatic Use
Block Parameter: domain_num

Current UTC offset — UTC offset value
double

The current UTC offset, in seconds.

If you specify a nonzero value, that value is considered valid. The UTCOffsetValid flag is set to
true. Otherwise, the flag is set to false. For more information, see IEEE Std 1588-2008 Clause
7.2.3.

When you select the Show advanced configuration parameters check box, Current UTC offset is
visible.

Programmatic Use
Block Parameter: utc offset

Priority 1 — Node priority 1
0 .. 255

IEEE 1588 Setup

Specify an integer value in the range 0—255. When the value is 0, the node has the highest priority.
When it is 255, the node has the lowest priority.

To assess the quality of two PTP clocks, the Best Master Clock Algorithm compares the following
parameters, in order:

1 Priority 1

2 Clock class

3 Clock accuracy

4 Priority 2

If a parameter for one PTP clock has a smaller value than that parameter for the other clock, the

algorithm selects the clock with the smaller value as the best clock. If all four parameters are equal
for both clocks, the algorithm compares the MAC addresses of the nodes.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.2.

When you select the Show advanced configuration parameters check box, Priority 1 is visible.

Programmatic Use
Block Parameter: priorityl

Clock class — Node clock class
0 .. 255

Specify a nonreserved integer value in the range 0—255. If Clock class is less than 128, the node
cannot enter the SLAVE state. If Clock class is less than 128 and the node is not selected as the best
clock, the node enters the PASSIVE state.

If you specify a reserved integer value, the block produces an error during model update. For more
information, see IEEE Std 1588-2008 Clause 7.6.2.4. For a list of reserved and nonreserved Clock
class values, see IEEE Std 1588-2008 Table 5.

When you select the Show advanced configuration parameters check box, Clock class is visible.

Programmatic Use
Block Parameter: clock class

Clock accuracy — Node clock accuracy
0 .. 254

Specify a nonreserved integer value in the range 0—254.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.5. For a list of reserved and nonreserved
Clock accuracy values, see IEEE Std 1588-2008 Table 6.

When you select the Show advanced configuration parameters check box, Clock accuracy is
visible.

Programmatic Use
Block Parameter: sample time

Priority 2 — Node priority 2
0 .. 255

19-29

19 Precision Time Protocol Blocks

Specify an integer value in the range 0—255. When the value is 0, the node has the highest priority.
When it is 255, the node has the lowest priority.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.3.

When you select the Show advanced configuration parameters check box, Priority 2 is visible.

Programmatic Use
Block Parameter: priority?2

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

Introduced in R2015b

19-30

https://standards.ieee.org

IEEE 1588 Adjust Time

IEEE 1588 Adjust Time

Run Precision Time Protocol clock correction servo
Library: Simulink Real-Time / IEEE 1588

) PTP
) Trigger Adjust Time

Description

When Triggeris true, IEEE 1588 Adjust Time performs time offset correction at every sample time
until the offset drops below a threshold value. It then switches to rate correction. During rate
correction, the block adjusts the time increment value of the Ethernet card to track the master PTP
clock rate.

The PTP internal block descriptions are for informational purposes only. You cannot use these blocks

by themselves in a model. The subsystem mask controls the block parameters. Do not edit the
parameters directly.

Ports
Input

Trigger — Trigger time adjustment
false | true

While Trigger is true, the block runs the time adjustment algorithm at every time step.

Parameters

Sample time (-1 for inherited) — Sample time
-1

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample time

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

Introduced in R2015b

19-31

https://standards.ieee.org

19 Precision Time Protocol Blocks

19-32

IEEE 1588 Create Message

Pack a Precision Time Protocol message for transmission
Library: Simulink Real-Time / IEEE 1588

Data [p

PTP
Create SYNC message
Length [

Description

Creates and packs an IEEE 1588 message of a type specified by parameter Message type. Sends the
message and the message length to the Data and Length outputs, respectively.

By default, IEEE 1588 Create Message creates a message at every sample time. If you select the
Enable trigger port check box, IEEE 1588 Create Message creates a message at every sample time
only when the trigger is true.

The PTP internal block descriptions are for informational purposes only. You cannot use these blocks

by themselves in a model. The subsystem mask controls the block parameters. Do not edit the
parameters directly.

Ports
Input

Trigger — Message trigger
false | true

While Trigger is true, the block creates a message at every sample time.
When Enable trigger port is true, this input is visible.
Output

Data — Message data
array

Message data in a uint8 array.

Length — Message length
double

Message data length (double).

Parameters

Message type — Message type to pack
Sync (default) | Delay Req | Pdelay Req | Pdelay Resp | Follow up | Delay Resp |
Pdelay Resp Follow up | Announce

IEEE 1588 Create Message

Select the PTP message type to pack. Select one of Sync, Delay Req, Pdelay Req, Pdelay Resp,

Follow up, Delay Resp, Pdelay Resp Follow up, and Announce.
For more information, see IEEE Std 1588-2008 Clause 7.3.3.

Programmatic Use
Block Parameter: message type

Sample time (-1 for inherited) — Sample time
-1

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample time

Enable trigger port — Show trigger port
off (default) | on

Selecting this check box makes input port Trigger visible.

Programmatic Use
Block Parameter: trigger port

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

Introduced in R2015b

19-33

https://standards.ieee.org

19 Precision Time Protocol Blocks

19-34

IEEE 1588 Process Message

Process a received Precision Time Protocol message
Library: Simulink Real-Time / IEEE 1588

NData Flag [

Process Meszage

) Length Typa [

Description

Unpack a received PTP message and execute the actions that the message data requires. For
example, get timestamps and calculate offset.

The PTP internal block descriptions are for informational purposes only. You cannot use these blocks

by themselves in a model. The subsystem mask controls the block parameters. Do not edit the
parameters directly.

Ports
Input

Data — Message data
array

Message data in a uint8 array.

Length — Message length
double

Message data length (double).
Output

Flag — Two-steps flag
false | true

If true, the two-steps flag bit in the message is set, otherwise, the bit is cleared.

Type — Message type
0 .. 11

Message type (uint8). Return one of:
* 0=Sync

*+ 1=Delay Req

+ 2 =Pdelay Req

IEEE 1588 Process Message

* 3 =Pdelay Resp

* 8=Follow up

* 9 =Delay Resp

* 10 = Pdelay Resp Follow up
* 11 = Announce

For more information, see IEEE Std 1588-2008 Clause 7.3.3.

Parameters

Sample time (-1 for inherited) — Sample time
-1

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample time

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

Introduced in R2015b

19-35

https://standards.ieee.org

19 Precision Time Protocol Blocks

19-36

IEEE 1588 Sync Error

Output block execution step size and offset delta of real-time interrupt
Library: Simulink Real-Time / IEEE 1588

Time [»

PTP
Get Sync Time and Delk;"e':| 4

Delta [

Description

The block returns the block execution step size as measured by the PTP clock. It also returns the
following information:

* The PTP time when the real-time interrupt triggers.

* The difference between the PTP time at the real-time interrupt and the nearest PTP time that is a
multiple of the fundamental sample time.

To use this block, in the Simulink Real-Time options, set the real-time interrupt source to Timer.
The PTP internal block descriptions are for informational purposes only. You cannot use these blocks

by themselves in a model. The subsystem mask controls the block parameters. Do not edit the
parameters directly.

Ports
Output

Time — PTP time value
0

PTP time value when the real-time interrupt occurs, in seconds

Step — Block execution step size
0

Actual block execution step size, in seconds, as calculated from PTP clock measurements

Delta — PTP Time between interrupt and next sample time
0

Current difference, in seconds, between the PTP time at the interrupt and the nearest PTP time that
is a multiple of the fundamental sample time

Parameters

Sample time (-1 for inherited) — Sample time
-1

Enter the base sample time or a multiple of the base sample time.

IEEE 1588 Sync Error

Programmatic Use
Block Parameter: sample time

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

Introduced in R2016a

19-37

https://standards.ieee.org

19 Precision Time Protocol Blocks

19-38

Adjust Step Size

Adjust block step size during execution
Library: Simulink Real-Time / IEEE 1588

Nadi Adjust Step Size

Description

The block sets the execution step size of the block. The block execution step size is equal to the
fundamental sample time plus the value of Adj, scaled to the block sample time. For example, if the
block sample time is twice the fundamental sample time, each fundamental execution step gets half
of the Adj value.

When the block changes the execution step size, the new value remains active until the block changes
the value again.

The PTP internal block descriptions are for informational purposes only. You cannot use these blocks
by themselves in a model. The subsystem mask controls the block parameters. Do not edit the
parameters directly.

Ports
Input

Adj — Step size adjustment
double

Step size increment

Parameters

Sample time (-1 for inherited) — Sample time
-1

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample time

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

Introduced in R2016a

https://standards.ieee.org

Current Step Size

Current Step Size

Output current block execution step size
Library: Simulink Real-Time / IEEE 1588

csp

Get Current
Step Size
BR [

Description

The block returns the current block execution step size. When you select Enable base rate output
port, output port BR shows the base rate or model fundamental step size.

The PTP internal block descriptions are for informational purposes only. You cannot use these blocks

by themselves in a model. The subsystem mask controls the block parameters. Do not edit the
parameters directly.

Ports
Output

CS — Current step size
double

Current block execution step size, in seconds

BR — Base rate
double

Base rate, or model fundamental step size, in seconds

When you select Enable base rate output port, this port becomes visible.

Parameters

Sample time (-1 for inherited) — Sample time
-1

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample time

Enable base rate output port — Show base rate
on (default) | of f

To make the BR output visible, select this check box.

Programmatic Use
Block Parameter: base rate on

19-39

19 Precision Time Protocol Blocks

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 18-21

External Websites
standards.ieee.org

Introduced in R2016a

19-40

https://standards.ieee.org

Real-Time UDP Configuration

Real-Time UDP Configuration

Configure network interface for real-time UDP communication
Library: Simulink Real-Time / IEEE 1588 / PTP UDP

Real-time UDP
Configuration

Id: 1

Description
The Real-Time UDP Configuration block configures the network for real-time UDP operation.

IP fragmentation is not supported in Simulink Real-Time PTP UDP blocks. The packet payload is
limited to 1472 bytes (1500 bytes UDP packet size — 28 bytes combined packet header size).

Parameters

Device ID — Identify this Ethernet board
1 (default) | 1-8

From the list, select a unique integer to identify the Ethernet board. Use this ID to associate the other
UDP blocks with this board.

Programmatic Use
Block Parameter: ID

IP Address — IP address for interface
X.X.X. X

The addresses 0.0.0.0 and 255.255.255. 255 are invalid local IP addresses.

Programmatic Use
Block Parameter: IpAddress

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x. x.x.x

Mask that designates a logical subdivision of a network.

Programmatic Use
Block Parameter: SubnetMask

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

The gateway must be within the network.

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.

Programmatic Use
Block Parameter: Gateway

19-41

19 Precision Time Protocol Blocks

19-42

Ethernet Driver — Driver for each chip family
Intel 8255X (default) | Intel Gigabit

Identifies the driver for each chip family that the block supports.

Programmatic Use
Block Parameter: EthDrv

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: PciBus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: PciFunction

See Also
Receive | Send

Topics
“Target to Target Transmission using UDP”

External Websites
WWW.is0.0rg

Introduced in R2014b

https://www.iso.org

Receive

Receive
Receive data over UDP network on a dedicated network interface
Library: Simulink Real-Time / IEEE 1588 / PTP UDP
UDP Diata [*
Receive
Id: 1 M >
Description

The Receive block receives UDP data on the specified local (destination) port. To receive all data sent
to this port, set Source IP address to 0.0.0.0, otherwise set Source IP address to a valid IP
address.

The default block behavior is to keep the previous output when there is no new data.

IP fragmentation is not supported in Simulink Real-Time PTP UDP blocks. The packet payload is
limited to 1472 bytes (1500 bytes UDP packet size — 28 bytes combined packet header size).

Ports

Output Arguments

Data — Data received
[uint8]

Vector of uint8 containing data received.

N — Number of bytes received
0-1472

Number of new bytes received, and otherwise 0.

Parameters

Device ID — Device ID for Ethernet board
1 (default) | 1-8

From the list, select a unique number to identify the Ethernet board. Select the same Device ID as
the one you selected for the Real-Time UDP Configuration block.

Programmatic Use
Block Parameter: ID

Source IP address — IP address from which device accepts packets
0.0.0.0 (default) | x.x.x.x

Enter a valid IP address as a dotted decimal character vector, for example, 10.10.10. 3. You can also

use a MATLAB expression that returns a valid IP address as a character vector. With Local
(destination) port, this parameter defines the source address.

19-43

19 Precision Time Protocol Blocks

The default address, 0.0.0.0, causes the block to accept UDP packets from any accessible
computer. If Source IP address is set to a specific IP address, packets arriving from only that IP
address are received.

The address 255.255.255. 255 is an invalid IP address.

Programmatic Use
Block Parameter: Receivel

Local (destination) port — Port from which device accepts packets
1-65535

Specify the port of the target computer or device from which to receive the UDP packets. With
Source IP address, this parameter defines the source address.

Programmatic Use
Block Parameter: Receive2

Output port width — Width of output vector, in bytes
1-65504

Determines the width of the Data output vector. If this value is less than the number of bytes in the
received packet, the excess bytes are discarded.

Programmatic Use
Block Parameter: Receive3

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: Receive4

See Also
Real-Time UDP Configuration | Send

External Websites
WWW.1S0.0rg

Introduced in R2011a

19-44

https://www.iso.org

Send

Send

Send data over UDP network on a dedicated network interface
Library: Simulink Real-Time / IEEE 1588 / PTP UDP

Aoata ynp
Sand

) . Id: 1

Description

The Send block sends UDP packets from Local (source) port to Destination port. To broadcast to
all devices, set Destination IP address to 255.255.255.255, otherwise set Destination IP
address to a valid IP address.

IP fragmentation is not supported in Simulink Real-Time PTP UDP blocks. The packet payload is
limited to 1472 bytes (1500 bytes UDP packet size — 28 bytes combined packet header size).

Ports
Input

Data — Data to transmit
[uint8]

Vector of uint8 containing data to send.

N — Number of bytes to transmit
0-1472

Number of bytes to send.

Parameters

Device ID — Device ID for Ethernet board
1 (default) | 1-8

From the list, select a unique number to identify the Ethernet board. Select the same Device ID as
the one you selected for the Real-Time UDP Configuration block.

Programmatic Use
Block Parameter: ID

Destination IP address — IP address to which device sends packets
255.255.255.255 (default) | x. x.x.x

Specify the IP address of the target computer or other device to which you want to send the UDP

packets. To broadcast the packets to all listening computers or devices, enter 255.255.255.255.
With Destination port, this parameter defines the destination address.

19-45

19 Precision Time Protocol Blocks

19-46

Programmatic Use
Block Parameter: Sendl

Destination port — Port to which device sends packets
1-65535

Specify the target computer port to which you want to send the UDP packets. With Destination IP
address, this parameter defines the destination address.

Programmatic Use
Block Parameter: Send2

Local (source) port — Target computer port that sends packets
-1 (default) | 1-65535

Specify the target computer port from which you want to send the UDP packets.

Enter -1 to automatically assign a port for the target computer.

Programmatic Use
Block Parameter: Send3

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: Send4

See Also
Real-Time UDP Configuration | Receive

External Websites
WWW.1S0.0rg

Introduced in R2011a

https://www.iso.org

UDP Consume

UDP Consume

Consume a UDP packet

Library: Simulink Real-Time / IEEE 1588 / PTP UDP
Buffers [
) UDP Consume
Chain Size [
Description

The UDP Consume block outputs a network buffer with raw data that you can output to a Network
Buffer library block. To create this output, the block:

1 Receives as input a network buffer that contains a UDP header.
2 Removes the UDP header.
3 Outputs the updated network buffer.

Ports

Output

Buffers — Chain of buffers
pointer

Chain of network buffers.

Chain size — Number of buffers
integer

Number of buffers on the chain.

Parameters

IP Group — IP Init block ID
0 (default)

Enter a number in the range 0 to 7. This value identifies the IP Init block inside the Real-Time UDP
Configuration subsystem that is associated with this block.

Programmatic Use
Block Parameter: Group

Output port width — Output port width selection
0 (default)

Enter the width of the port. A value other than 0 creates the following output ports:

* Source IP Address
* Destination IP Address

19-47

19 Precision Time Protocol Blocks

* Local UDP Port
 Remote UDP Port

Programmatic Use
Block Parameter: VectorSize

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: SampleTime

See Also

External Websites
WWW.is0.0rg

Introduced in R2011a

19-48

https://www.iso.org

UDP Produce

UDP Produce

Produce UDP packet by adding a UDP header to the input data
Library: Simulink Real-Time / IEEE 1588 / PTP UDP

¥ UDP Produce -]

Description

The UDP Produce block receives a network buffer and adds a header to that buffer. It then outputs
that updated buffer.

Parameters

IP Group — IP Init block ID
0 (default)

Enter a number in the range 0 to 7. This value identifies the IP Init block inside the Real-Time UDP
Configuration subsystem that is associated with this block.

Programmatic Use
Block Parameter: Group

IP address to send to (255.255.255.255 for broadcast) — Destination IP address
255.255.255.255 (default)

Specify IP address of the target computer to which to send the UDP packets. To broadcast the
packets to all listening computers or devices, enter 255.255.255.255. With Remote IP port to
send to, this parameter defines the destination address.

Programmatic Use
Block Parameter: DstIp

Remote IP port to send to — Destination IP port
25000 (default)

Specify the target computer port to which to send the UDP packets. With IP address to send to
(255.255.255.255 for broadcast), this parameter defines the destination address.

Programmatic Use
Block Parameter: RemPort

Use the following local IP port (-1 for automatic assignment) — Source IP port
-1 (default)

Specify the target computer port from which to send the UDP packets.

Enter -1 to automatically assign a port for the target computer.

Programmatic Use
Block Parameter: LocPort

19-49

19 Precision Time Protocol Blocks

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: SampleTime

See Also

External Websites
WWW.1S0.0rg

Introduced in R2011a

19-50

https://www.iso.org

UDP Rx

UDP Rx

Receive UDP packet
Library: Simulink Real-Time / IEEE 1588 / PTP UDP

UDP Rx]

Description

The UDP Rx block outputs a network buffer with a UDP header.

Parameters

IP Group — IP Init block ID
0 (default)

Enter a number in the range 0 to 7. This value identifies the IP Init block inside the Real-Time UDP
Configuration subsystem that is associated with this block.

Programmatic Use
Block Parameter: Group

IP address to receive from (0.0.0.0 for accepting all) — Source IP address
0.0.0.0 (default)

Enter a valid IP address as a dotted decimal character vector. For example, 10.10.10. 3. You can
also use a MATLAB expression that returns a valid IP address as a character vector. With IP port to
receive from, this parameter defines the source address.

The default address, 0.0.0.0, enables the acceptance of all UDP packets from any accessible
computer. If set to a specific IP address, only packets arriving from that IP address are received.

Programmatic Use
Block Parameter: SourceAddress

IP port to receive from — Source IP port
25000 (default)

Specify the port of the target computer or device from which to receive the video frames. With IP
address to receive from (0.0.0.0 for accepting all), this parameter defines the source address.

Programmatic Use
Block Parameter: LocalPort

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

19-51

19 Precision Time Protocol Blocks

19-52

Programmatic Use
Block Parameter: SampleTime

See Also

External Websites
WWW.iS0.0rg

Introduced in R2011a

https://www.iso.org

UDP Tx

UDP Tx

Transmit UDP packet
Library: Simulink Real-Time / IEEE 1588 / PTP UDP

- UDFP Tx
Description

The UDP Tx block receives a network buffer with a UDP header and sends it.

Parameters

IP Group — IP Init block ID
0 (default)

Enter a number in the range 0 to 7. This value identifies the IP Init block inside the Real-Time UDP

Configuration subsystem that is associated with this block.

Programmatic Use
Block Parameter: Group

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: SampleTime

See Also

External Websites
WWW.1S0.0rg

Introduced in R2011a

19-53

https://www.iso.org

SAE J1939

20 sAE 1939

SAE J1939 Blocks

The Simulink Real-Time J1939 blocks enable you to send and receive messages over a FIFO-mode
CAN network using the SAE J1939 message protocol. See “CAN”.

Before you start, provide a J1939 database in .dbc format.

See Also

More About
e “CAN”

20-2

SAE J1939 Blocks

21 sAE)1939 Blocks

21-2

J1939 Network Configuration

Define J1939 network configuration name and database file
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication Config: Corfig1
Database:11939 dbc

J1939 Network
Configuration

Description

The J1939 Network Configuration block is where you define a configuration name and specify the
associated user-supplied J1939 database. You can include more than one block per model, each
corresponding to a unique configuration on the CAN bus.

Note You need a license for both Vehicle Network Toolbox™ and Simulink software to use this block.

Other Supported Features

The J1939 communication blocks support the use of Simulink Accelerator and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment capabilities.
Code generation requires the Microsoft C++ compiler.

Parameters

Configuration name — Define a name for this J1939 network configuration
ConfigX (default) | character vector

The default value is ConTigX, where the number X automatically increases from 1 based on the
number of existing blocks.

Programmatic Use

ConfigName

Database File — Specify the J1939 database file name relative to the current folder
not set (default) | character vector

An example file name, enter J1939.dbc if the file is in the current folder; otherwise enter the full
path with the file name, such as C:\work\J1939.dbc.

The database file defines the J1939 parameter groups and nodes, and must be in the . dbc format
defined by Vector Informatik GmbH.

Programmatic Use

DbFile

J1939 Network Configuration

See Also
J1939 CAN Transport Layer | J1939 Node Configuration | J1939 Receive | J1939 Transmit

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

21-3

21 sAE)1939 Blocks

21-4

J1939 Node Configuration

Configure J1939 node with address and network management attributes
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication Config Canigt

J1939 Node
Configuration

Description

The J1939 Node Configuration block is where you define a node and associate it with a specific
network configuration. Its Message information is read from the database for that configuration,
unless you are creating and configuring a custom node.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The J1939 communication blocks support the use of Simulink Accelerator and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment capabilities.
Code generation requires the Microsoft C++ compiler.

Ports
Output

Address — Returns the effective address of the node
int8

This optional output port exists when you check Output current node address in the dialog box.

AC Status — Indicates the success (1) or failure (0) of the node’s address claim
01

This optional output port exists when you check Output address claim status in the dialog box.

Parameters

Config name — ID of the J1939 network configuration to associate with this node
ConfigX (default) | character vector

This ID is used to access the corresponding J1939 database.
Programmatic Use

ConfigName

J1939 Node Configuration

Node name — name of this J1939 node
NodeX (default) | character vector

The available list shows none if no J1939 network configuration is found or no node is defined in the
associated database. If you are creating a custom node, the node name must be unique within its
J1939 network configuration.

Programmatic Use

NodeID

Message — Nine network attributes as defined by the database file consistent with the
J1939 protocol
vector array

These parameters are read-only unless you are defining a custom node.

* Allow arbitrary address — Allow/disallow the node to switch to an arbitrary address if the
station address is not available. If this option is off and the node loses its address claim, the node
goes silent.

Node Address — Station address, decimal, 8-bit.
* Industry Group — Decimal, 3-bit.
* Vehicle System — Decimal, 7-bit.

* Vehicle System Instance — Identifies one particular occurrence of a given vehicle system in a
given network. If only one instance of a certain vehicle system exists in a network, then this field
must be set to 0 to define it as the first instance. Decimal, 4-bit.

* Function ID — Decimal, 8-hit.

+ Function Instance — Identifies the particular occurrence of a given function in a vehicle system
and given network. If only one instance of a certain function exists in a network, then this field
must be set to 0 to define it as the first instance. Decimal, 5-bit.

* ECU Instance — This 3-bit field is used when multiple electronic control units (ECU) are involved
in performing a single function. If only one ECU is used for a particular controller application
(CA), then this field must be set to 0 to define it as the first instance.

* Manufacturer Code — Decimal, 11-bit.
* Identity Number — Decimal, 21-bit.

Programmatic Use

AllowACC

NodeAddress
IndustryGroup
VehicleSystem
VehicleSystemInstance
FunctionID
FunctionInstance
ECUInstance
ManufacturerCode
IDNumber

Sample time — Simulation refresh rate
0.01 (default) | double

21-5

21 sAE)1939 Blocks

21-6

Specify the sampling time of the block during simulation. This value defines the frequency at which
the J1939 Node Configuration updates its optional output ports. If the block is inside a triggered
subsystem or inherits a sample time, specify a value of - 1. You can also specify a MATLAB variable
for sample time. The default value is 0.01 seconds. For information about simulation sample timing,
see “What Is Sample Time?” (Simulink)

Programmatic Use

SampleTime

Output current node address — Enable or disable the Address port display
off (default) | on

Enable or disable the Address output port to show the effective address. The effective address is
different from the predefined station address if Allow arbitrary address is selected, a name conflict
occurs, and the current node has lower priority. The output signal is a double value from 0 to 253.
This port is disabled by default.

Programmatic Use

OutputAddress

Output address claim status — Enable or disable the address claim AC Status display
off (default) | on

Enable or disable the address claim AC Status output port to show the success of an address claim.
The output value is binary, 1 for success or 0 for failure. This port is disabled by default.

Programmatic Use

OutputACStatus

See Also
J1939 Receive | J1939 Transmit | J1939 CAN Transport Layer | J1939 Network Configuration

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

J1939 CAN Transport Layer

J1939 CAN Transport Layer

Generate and consume J1939 messages that are transported by CAN hardware
Library: Simulink Real-Time /J1939

JCaN Msg CAN Msg [»
Mo config selected

p I 3

Description

The J1939 CAN Transport Layer block handles CAN messages that your model transmits or receives
with Simulink Real-Time CAN library blocks.

Connect the input side of the block to a block that receives CAN messages. Connect the output side of
the block to a block that transmits the J1939 messages over CAN. Set up the transmitting block so
that a CAN message is sent only when an J1939 message is available. Otherwise, the block sends ©
byte data when J1939 messages are not available, causing undefined behavior.

Ports
Input

CAN Msg — CAN MESSAGE structures being consumed
vector

Vector of CAN MESSAGE structures being consumed

N — Number of messages
integer

Number of messages in the vector
Output

CAN Msg — CAN MESSAGE structures being generated
vector

Vector of CAN MESSAGE structures being generated

N — Number of messages
integer

Number of messages in the vector

See Also

Blocks
J1939 Network Configuration | J1939 Node Configuration | J1939 Receive | J1939 Transmit

Topics
“Basic J1939 Communication over CAN”

21-7

21 sAE)1939 Blocks

Introduced in R2020b

21-8

J1939 Receive

J1939 Receive

Receive J1939 parameter group messages
Library: Simulink Real-Time / J1939 Communication
Vehicle Network Toolbox / J1939 Communication Corfig: Datap

Node:
PG:

Msg Status pr

J1939 Receive

Description

The J1939 Receive block receives a J1939 message from the configured CAN device. The J1939
database file defines the nodes and parameter groups. You specify the J1939 database with the J1939
Network Configuration block.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The J1939 communication blocks support the use of Simulink Accelerator and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment capabilities.
Code generation requires the Microsoft C++ compiler.

Ports
Output

Data — Data output
double

Depending on the J1939 parameter group defined in the J1939 database file, the block can have
multiple data output signal ports. The block output data type is double.

Msg Status — Message received status
0|1

When Output New Message Received status is checked in the dialog box, this port outputs 1 when
a new message is received from the CAN bus; otherwise, outputs 0.

Parameters

Config name — Name of the J1939 network configuration to associate
ConfigX (default) | character vector

The name of the J1939 network configuration to associate with. This is used to access the
corresponding J1939 database. Only the nodes defined in the model and associated with the specified

21-9

21 sAE)1939 Blocks

J1939 network configuration appear in the Node name list. The option shows none if no J1939
network configuration is found.

Programmatic Use

ConfigName

Node name — Name of the J1939 node
NodeX (default) | character vector

The name of the J1939 node. The drop-down list includes all the nodes in the model, both custom
nodes and nodes from the database.

Programmatic Use

NodeName

Parameter Group — Parameter group number (PGN) and name from database
character vector

The parameter group number (PGN) and name from the database. The contents of this list vary
depending on the parameter groups that the J1939 database file specifies. The default is the first
parameter group for the selected node.

Note If you change any parameter group settings within your J1939 database file, you must then
open the J1939 Receive block dialog box and select the same Parameter Group, then click OK or
Apply to update the parameter group information in the block.

Programmatic Use

PGList

Signals — Signals defined in the parameter group
array of character vectors

Signals defined in the parameter group. The Min and Max settings are read from the database, but
by default the block does not clip signal values that exceed this range.

Programmatic Use

PGName
MsgLength
SignallInfo
NSignals
StartBits
SignalSizes
ByteOrders
DataTypes
MultiplexTypes
MultiplexValues
Factors
Offsets
Minimums
Maximums

Units

SPN

Comment

21-10

J1939 Receive

Source Address Filter — Filter messages based on source address
Allow all (default) | Allow only

Filter messages based on source address:

* Allow only — Lets you specify a single source address of interest.

* Allow all — Accepts messages from any source address. This is the default.
Programmatic Use

SrcAddrFilter
SrcAddress

Destination Address Filter — Filter out message based on destination address
global and node specific (default) | global only | node specific only

Filter out message based on destination address:

* global only — Receive only broadcast messages.
* node specific only — Receive only messages addressed to this node.

* global and node specific — Receive all broadcast and node-addressed messages. This is the
default.

Programmatic Use

DestAddrFilter

Sample time — Simulation refresh rate
-1 (default) | double

Simulation refresh rate. Specify the sampling time of the block during simulation. This value defines
the frequency at which the J1939 Receive updates its output ports. If the block is inside a triggered
subsystem or inherits a sample time, specify a value of - 1. You can also specify a MATLAB variable
for sample time. The default value is 0.01 seconds. For information about simulation sample timing,
see “What Is Sample Time?” (Simulink)

Programmatic Use

SampleTime

Output New Message Received status — Create a Msg Status output
0 (default) | 1

Select this check box to create a Msg Status outputMsg Status output port. Its output signal
indicates a new incoming message, showing 1 for a new message received, or 0 when there is no new
message.

Programmatic Use

outputNew

See Also
J1939 CAN Transport Layer | J1939 Network Configuration | J1939 Node Configuration | J1939
Transmit

21-11

21 sAE)1939 Blocks

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

21-12

J1939 Transmit

J1939 Transmit

Transmit J1939 message
Library: Simulink Real-Time / J1939 Communication
Vehicle Network Toolbox / J1939 Communication b L

Mode:
PG:

A Trigger

J1939 Transmit

Description

The J1939 Transmit block transmits a J1939 message. The J1939 database file defines the nodes and
parameter groups. You specify the J1939 database with the J1939 Network Configuration block.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The J1939 communication blocks support the use of Simulink Accelerator and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment capabilities.
Code generation requires the Microsoft C++ compiler.

Ports
Input

Data — Input data
signal

Depending on the J1939 parameter group and signals defined in the J1939 database file, the block
can have multiple data input ports.

Trigger — Enables the transmission of message
0|1

Enables the transmission of the message for that sample. A value of 1 specifies to send, a value of 0
specifies not to send.

Parameters

Config name — Name of the J1939 network configuration to associate
ConfigX (default) | character vector

The name of the J1939 network configuration to associate with. This is used to access the
corresponding J1939 database. Only the nodes defined in the model and associated with the specified

21-13

21 sAE)1939 Blocks

21-14

J1939 network configuration appear in the Node name list. The option shows none if no J1939
network configuration is found.

Programmatic Use

ConfigName

Node name — Name of the J1939 node
NodeX (default) | character vector

The name of the J1939 node. The drop-down list includes all the nodes in the model, both custom
nodes and nodes from the database.

Programmatic Use

NodeName

Parameter Group — Group number (PGN) and name
int8

The parameter group number (PGN) and name from the database. The contents of this list vary
depending on the parameter groups that the J1939 database file specifies. The default is the first
parameter group for the selected node.

Note If you change any parameter group settings within your J1939 database file, you must then
open the J1939 Transmit block dialog box and select the same Parameter Group, then click OK or
Apply to update the parameter group information in the block.

Programmatic Use

PGName

Signals — Signals defined in parameter group
array of character vectors

Signals defined in the parameter group. The Min and Max settings are read from the database, but
by default the block does not clip signal values that exceed this range.

Programmatic Use

SignallInfo
NSignals
StartBits
SingalSizes
ByteOrders
DataTypes
MultiplexTypes
MultiplexValuses
Factors
Offsets
Minimums
Maximums

Units

SPN

Comment

J1939 Transmit

PG Priority — Priority of the parameter group
int8

Priority of the parameter group, read from the database. This priority setting resolves clashes of
multiple parameter groups transmitting on the same bus at the same time. If a conflict occurs, the
priority group with lower priority (i.e., higher value) will refrain from transmitting. The value can
range from 0 (highest priority) to 7 (lowest).

Programmatic Use

PGPriority

Destination Address — Name of the destination node
int8

Name of the destination node. The default is the first node defined in the database, otherwise
Custom.

For a custom destination address, you can specify 0-253 for the address of the destination node. For
broadcasting to all nodes, use the Custom Destination Address setting with an address of 255.

Programmatic Use

DestAddrID

See Also

J1939 CAN Transport Layer | J1939 Network Configuration | J1939 Node Configuration | J1939
Receive

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

21-15

Shared Memory Support

This topic describes implementations of reflective (shared) memory by various manufacturers.

* “Create GE Fanuc Shared Partitions” on page 22-2

* “Initialize GE Fanuc Shared Nodes” on page 22-4

* “GE Fanuc Shared Partition Structure” on page 22-5

* “GE Fanuc Shared Node Initialization Structure” on page 22-6

* “Create Curtiss-Wright Shared Partitions” on page 22-10

* “Initialize Curtiss-Wright Shared Nodes” on page 22-12

* “Curtiss-Wright Shared Partition Structure” on page 22-13

* “Curtiss-Wright Shared Node Initialization Structure” on page 22-17

22 Shared Memory Support

Create GE Fanuc Shared Partitions

The Simulink Real-Time software uses a model for reflective (shared) memory that includes Simulink
blocks for shared memory driver functions. To define node initialization and shared memory
partitions, the driver functions use MATLAB structures. This topic describes the Simulink Real-Time
support of the GE Fanuc Embedded Systems shared memory boards.

To use the GE Fanuc Embedded Systems shared memory blocks, you must define shared memory
partition structures. A partition structure describes how you want to allocate (partition) the shared
memory. The Simulink Real-Time software allocates shared memory as segments of data that are
packed into memory regions or partitions. Along with the Shared Memory Pack and Shared Memory
Unpack blocks, the GE Fanuc Embedded Systems shared memory blocks use shared memory
partition structures.

After defining the shared memory partitions, you can add shared memory driver blocks to your
Simulink model. See “GE Fanuc Shared Partition Structure” on page 22-5 for the complete list of
fields in a partition.

The following description refers to the completepartitionstruct command. Type
help completepartitionstruct

for more information.

* Create a partiti

on structure in one of the following ways. Using the completepartitionstruct

command at the MATLAB Command Window, create a default partition structure. For example,

type
Partition = completepartitionstruct([], '5565")
Partition =
Address: '0x0'
Type: 'uint32'
Size: '1'
Alignment: '4'
Internal: [1x1 struct]

* At the MATLAB

Command Window, create a user-defined partition structure. Partially define a

structure in a script file, run that script in the MATLAB workspace, and fill in the resulting
structure with the completepartitionstruct function. For example:

Partition(1l).Address='0x5000";
Partition(1l).Type='int8";
Partition(1l).Size='10";
Partition(2).Type='uintl6';
Partition(2).Size='5";
Partition(3).Type='uint8';
Partition(3).Size="1";
Partition(3).Alignment='8";
Partition(4).Type="double';
Partition(4).Size='3";

This example defines a partition with four segments.

 The Addres
elements of

22-2

s field is optional. Only specify this field for the first segment of a partition. The
a partition are defined as a continuous memory block from the first address. The

Create GE Fanuc Shared Partitions

function extrapolates segment addresses from the first segment definition. If you have or
require fragmented memory, use multiple partitions.

The Type and Size fields are required for all segments in the partition structure.

The Alignment value is optional. It is '4' by default, which forces segments that do not have
alignment specifications to start on 4 byte (32 bit) boundaries. In the preceding partition
definition, the third segment (Partition(3)) has an alignment of '8".

The data type, size, and alignment of the preceding segment define the base addresses of
subsequent segments.

To populate the partition structure, call the completepartitionstruct() command.

Partition = completepartitionstruct(Partition, '5565"');

22-3

22 Shared Memory Support

Initialize GE Fanuc Shared Nodes

In addition to GE Fanuc Embedded Systems shared memory partitions, you must also define a node
initialization structure before using the shared memory blocks. A node initialization structure
describes the shared memory partitions (see “Create GE Fanuc Shared Partitions” on page 22-2) and
the board configuration, including interrupt settings.

After defining the node initialization structure, you can add shared memory driver blocks to your
Simulink model. See “GE Fanuc Shared Node Initialization Structure” on page 22-6 for the
complete list of fields in a node initialization structure.

The following description refers to the completenodestruct command. Type

help completenodestruct
for more information.

* Create a node initialization structure in one of the following ways. Using the
completenodestruct command at the MATLAB Command Window, create a default node
initialization structure. For example, type

node=completenodestruct([], '5565")
node =
Interface: [1x1 struct]
Partitions: [1x1 struct]
* Fill in the structure fields. For example:
node.Interface.NodelID = '128"';
node.Partitions = Partition;

* A user-defined node structure, created with MATLAB code or from the MATLAB Command
Window and supplement the resulting structure with a call to the completenodestruct
function. For example:

node.Interface.NodeID = '128"';
node.Partitions = Partition;
node.completenodestruct(node, '5565"');

22-4

GE Fanuc Shared Partition Structure

GE Fanuc Shared Partition Structure

You do not need to use all the fields of a partition initialization structure. However, knowing the
possible structure fields is helpful when you are setting up to use shared memory.

A shared memory partition structure has the following fields:

Address:
Type:
Size:

Alignment:
Internal:

where

‘uint32'

[1x1 struct]

Partition Fields

Description

Address

Specifies the base address (in hexadecimal) of the memory partition within
the shared memory space of the node. The default value is '0x0 ', the first
location in shared memory.

Align partition addresses on 32-bit word boundaries (for example, 0x0, 0x4,
0x8).

Type

Specifies the data type of the memory segment. Specify one of the following
types:

* single (IEEE Single Precision)

e double (IEEE Double Precision)

e uint8

+ int8

* uintl6

* 1intl6

e uint32

 int32

* Boolean (a single byte represents a boolean value)

The default value is 'uint32'. The minimum partition size is 32 bits.

Size

Specifies the dimension and size of the memory segment. You can enter a
scalar value or a value with the [m,n] format. The default valueis '1".

* scalar — Treats the Size entry as the specification of the length of a non-
oriented array or vector

* [m,n] — Treats the Size entry as an array dimension. The total number
of elements in this segment is m*n.

Alignment

If another partition precedes this partition, this field defines the byte
alignment of this segment. Specify one of the following alignment values: 1,
2, 3, 4, or 8. The default value is '4'. This value forces a double word
boundary alignment.

Internal

Reserved for internal use.

22-5

22 Shared Memory Support

GE Fanuc Shared Node Initialization Structure

A node initialization structure has the following fields:

Interface: [1x1 struct]
Partitions: [1x1 struct]

where
Node Structure Description
Fields
Interface Specifies how the board is configured. The Interface structure has the
following fields, three of which are structures:
* Mode — Configures board registers (see “Board Mode” on page 22-6)
* Interrupts — Enables the board to generate PCI interrupts from
network events that have been broadcast from other nodes, or in
response to error conditions (see “Board Interrupts” on page 22-7)
* NodeID — Specifies the node ID for the board (see “Board Node ID” on
page 22-8)
+ Internal — Reserved for internal use
Partitions Stores the shared memory segments (see “Create GE Fanuc Shared
Partitions” on page 22-2)
Board Mode

The shared memory board has several registers that you can set through the Interface.Mode field.
To display the board mode fields, type:

>> node.Interface.Mode

ans =
StatusLEDOff: 'off'
TransmitterDisable: 'off'
DarkOnDarkEnable: 'off'
LoopbackEnable: 'off'
LocalParityEnable: 'off'
MemoryOffset: 'O
MemorySize: '64MByte’

The mode values interact with the board setting of the LSR1 (Local Control and Status Register 1)
and LIER (Local Interrupt Enable Register) registers. Refer to the board product documentation for
further details on these two registers. To monitor the status of these modes, select the Error Status
Port check box of the read or write blocks.

Of particular note are the following modes:

22-6

GE Fanuc Shared Node Initialization Structure

Board Modes Description

StatusLEDOff Turns the board status LED on and off. Setting this value to 'off' turns off
the LED when the Simulink Real-Time model runs, setting this value to 'on'
turns on the LED when the Simulink Real-Time model runs. When the
Simulink Real-Time software terminates, the LED status reverses in both
cases. The default value is 'off"'.

MemoryOffset Applies a global offset to the network data transfers coming from the board.
The following table lists offset values and the resulting offset. The default
valueis '0".

MemorySize Specifies the minimum memory size required, in the format 'sizeMByte'.

The board driver checks this value against the memory size of the board. If
you enter a size in this field that is larger than the actual board memory
size, the driver returns an error.

This table lists the values for MemoryOffset:

Value Offset Produced
'0" 0

"1 0x4000000

2! 0x8000000

'3 0xC000000

Board Interrupts

The board can generate PCI interrupts in response to network events that have been broadcast from
other nodes, or in response to error conditions. For example, you can configure two Simulink Real-
Time Simulink models, one as master, and one as a slave of the broadcast node in the master
Simulink Real-Time model. In such a configuration, the broadcast node interrupt triggers the model
time steps.

To display the interrupt mode fields, type:
node.Interface.Interrupts

ans =
LocalMemoryParity: 'off'
MemoryWriteInhibited: 'off'
LatchedSyncLoss: 'off'
RXFifoFull: 'off'
RXFifoAlmostFull: 'off'
BadData: 'off'

PendingInit: 'off'
RoguePacket: 'off!'
ResetNodeRequest: 'off'
PendingInt3: 'off'
PendingInt2: 'off'
PendingIntl: 'off'

Each field corresponds to a bit in the LIER register of the GE Fanuc Embedded Systems shared
memory board. Each bit enables the specified interrupt source on the board. Refer to the board
product documentation for further details on this register.

22-7

22 Shared Memory Support

22-8

To enable a node to generate a network interrupt source, add the broadcast block to a model (the
master model). This block issues network interrupts at the model sample rate. To enable other nodes
of the network (the slave models) to accept broadcast interrupts, configure the slave models to expect
the broadcast interrupt.

The following procedure describes how to configure an entire Simulink Real-Time model to accept a
broadcast interrupt from the board.

1 From the MATLAB Command Window, type

tg = slrt;
getPCIInfo(tg, 'installed')

This command lists board information for the installed PCI devices that the Simulink Real-Time
software knows about.
2 Find the IRQ specified for the shared memory board.

To specify in the Real-Time interrupt source field of the Simulink Real-Time Options pane,
use this interrupt source number.

3 Edit your script and add a line like the following.
node.Interface.Interrupts.PendingIntl="on"'
This line directs the model to expect an interrupt. It assumes that the value of the broadcast

block Interrupt parameter is 1.
4 From the MATLAB Command Window, type the name of your Simulink model.

The Simulink model appears.
5 On the Real-Time tab, from the Prepare section, select Hardware Settings.
6 Select node Code Generation.
7 Select node Simulink Real-Time Options.
8 Set the Execution mode field to Real-Time.
9 C(lick the Real-Time interrupt source list.
10 Select the interrupt source number to which the board is set.

11 Click the I/O board generating the interrupt list and select GE _Fanuc (VMIC) PCI-5565
from the list.

12 Click OK.

Note If you have a larger model, to localize control of the interrupt within that model, use the IRQ
Source block from the Asynchronous Event sublibrary.

Board Node ID

The jumpers of the board specify the board node ID. Correspondingly, you can also configure the
block with the board node ID using the Interface.NodeID field. Enter values according to the
following:

GE Fanuc Shared Node Initialization Structure

NodelD Value Description

Allows the board driver to work with a node regardless of the board
node ID jumper setting

value from '0' to '255" Specifies the particular node that the driver must look for. If this
value does not match the jumpered value on the board, the driver
returns an error.

lanyl

The default value of 'any' meets requirements in most instances. If you have multiple shared-memory
boards in your system, to identify the driver for a particular node, specify a particular NodeID value.

22-9

22 Shared Memory Support

Create Curtiss-Wright Shared Partitions

22-10

The Simulink Real-Time software uses a model for reflective (shared) memory that includes Simulink
blocks for shared memory driver functions. To define node initialization and shared memory
partitions, the driver functions use MATLAB structures. This topic describes Simulink Real-Time
support of the Systran® shared memory board.

To use the Simulink Real-Time shared memory blocks, you must define shared memory partition
structures. A partition structure describes how you want to allocate (partition) the shared memory.
The Simulink Real-Time software allocates shared memory as segments of data that are packed into
memory regions or partitions. Along with the Shared Memory Pack and Shared Memory Unpack
blocks, the Systranshared memory blocks use shared memory partition structures.

After defining the shared memory partitions, you can add shared memory driver blocks to your
Simulink model. See “Curtiss-Wright Shared Partition Structure” on page 22-13 for the complete list
of fields in a partition structure.

The following description refers to the completepartitionstruct command. Type
help completepartitionstruct
for more information.

* Create a partition structure in one of the following ways. Using the completepartitionstruct
command at the MATLAB Command Window, create a default partition structure. For example,
type

Partition = completepartitionstruct([], 'scramnet')
Partition =

Address: '0x0'
Type: 'uint32'

Size: '1'
Alignment: '4'

RIE: 'off'

TIE: 'off'

ExtTriggerl: 'off'

ExtTrigger2: 'off'

HIPRO: 'off'
Internal: [1x1 struct]

* At the MATLAB Command Window, create a user-defined partition structure. Partially define a
structure in a script file, run that script in the MATLAB workspace, and fill in the resulting
structure with the completepartitionstruct function. For example:

Partition(1l).Address='0x5000";
Partition(1l).Type='int8";
Partition(1l).Size='10";
Partition(2).Type='uintl6";
Partition(2).Size='5";
Partition(3).Type="double';
Partition(3).Size="'3";
Partition(4).Type='uint8';
Partition(4).Size="'[2, 3]';

This example defines a partition with four segments.

Create Curtiss-Wright Shared Partitions

The Address field is optional. Only specify this field for the first segment of a partition. The
elements of a partition are defined as a continuous memory block from the first address. The
function extrapolates segment addresses from the first segment definition. If you have or
require fragmented memory, use multiple partitions.

The Type and Size fields are required for all segments in the partition structure.

The Alignment value is optional. It is '4' by default. This value forces segments that do not
have alignment specifications to start on 4 byte (32-bit) boundaries.

The data type, size, and alignment of the preceding segment define the base addresses of
subsequent segments.

To populate the partition structure, call the completepartitionstruct() command.

Partition = completepartitionstruct(Partition, 'scramnet');

22-11

22 Shared Memory Support

Initialize Curtiss-Wright Shared Nodes

22-12

In addition to shared memory partitions, you must also define a node initialization structure before
using the Systran shared memory blocks. A node initialization structure describes the shared memory
partitions (see “Create Curtiss-Wright Shared Partitions” on page 22-10) and the board configuration,
including interrupt settings. The initialization block requires a shared memory node initialization

structure.

After defining the node initialization structure, you can add shared memory driver blocks to your

Simulink model. See “Curtiss-Wright Shared Node Initialization Structure” on page 22-17 for the
complete list of fields in a node initialization.

The following description refers to the completenodestruct command. Type

help completenodestruct

for more information.

Create a node initialization structure in one of the following ways. Using the
completenodestruct command at the MATLAB Command Window, create a default node
initialization structure. For example, type

node=completenodestruct([], 'scramnet')
node =

Interface: [1x1 struct]
Partitions: [1x1 struct]

Fill in the structure fields. For example:

node.interface.NodeID = '128"';
node.Partitions = Partition;

A user-defined node structure, created with MATLAB code or from the MATLAB Command

Window and supplement the resulting structure with a call to the completenodestruct
function. For example:

node.Interface.NodeID = '128"';
node.Partitions = Partition;
node = completenodestruct(node, 'scramnet');

Curtiss-Wright Shared Partition Structure

Curtiss-Wright Shared Partition Structure

A shared memory partition structure has the following fields. You do not need to use all the fields of a
partition or node initialization structure. However, knowing the possible structure fields is helpful
when you are setting up to use shared memory.

Address: '0Ox0'
Type: 'uint32'

Size: '1
Alignment: '4'

RIE: 'off'

TIE: 'off'

ExtTriggerl: 'off'

ExtTrigger2: 'off'

HIPRO: 'off'
Internal: [1x1 struct]

where

Partition Fields Description

Address Specifies the base address (in hexadecimal) of the memory partition within the
node shared memory space. The default value is '0x0 ', the first location in
shared memory. The base address is byte aligned.

Type Specifies the data type of the memory segment. Specify one of the following
types:

* double

+ float

* uint8

* int8

* uintl6

 intl6

e uint32

¢ int32

* boolean (a single byte represents a boolean value)

The minimum partition size is 32 bits.

The default value is 'uint32".

Size Specifies the dimension and size of the memory segment. You can enter a
scalar value or a value with the [m, n] format. The default valueis '1".

* scalar — Treats the Size entry as the specification of the length of a non-
oriented array or vector

* [m,n] — Treats the Size entry as an array dimension. The total number of
elements in this segment is m*n.

22-13

22 Shared Memory Support

Partition Fields

Description

Alignment

Specifies the byte alignment of the next partition (if one is defined). Enter
alignment value in bytes: 1, 2, 3, 4. The alignment value defines the end of the
current segment, and therefore the beginning alignment of the next segment.
The default value is '4 "', forcing a double word boundary alignment. See
“Alignment Examples” on page 22-15.

RIE

Specifies whether this partition can receive interrupts (Receive Interrupt
Register (RIE)). Specify one of:
* 'off' (default) — Prevents the partition from receiving interrupts.

o 'first' — Allows only the first double word of the memory segment to be
marked with the corresponding Auxiliary Control RAM bit.

*+ 'all' — Allows all memory locations of the memory segment to be marked
with the corresponding Auxiliary Control RAM bit.

* 'last' — Allows only the last double word of the memory segment to be
marked with the corresponding Auxiliary Control RAM bit.

TIE

Specifies whether this partition can transmit interrupts (Transmit Enable
(TIE)). Specify one of:
+ 'off' (default) — Prevents the partition from transmitting interrupts.

« 'first' — Allows only the first double word of the memory segment to be
marked with the corresponding Auxiliary Control RAM bit.

* 'all' — Allows all memory locations of the memory segment to be marked
with the corresponding Auxiliary Control RAM bit.

+ ‘'last' — Allows only the last double word of the memory segment to be
marked with the corresponding Auxiliary Control RAM bit.

ExtTriggerl

If this partition receives a write access, specifies whether this partition can
generate a trigger signal to an external connector. Specify one of:
+ 'off' (default) — Prevents the partition from generating signals.

o« 'first' — Allows only the first double word of the memory segment to be
marked with the corresponding Auxiliary Control RAM bit.

* ‘'all' — Allows all memory locations of the memory segment to be marked
with the corresponding Auxiliary Control RAM bit.

* 'last' — Allows only the last double word of the memory segment to be
marked with the corresponding Auxiliary Control RAM bit.

22-14

Curtiss-Wright Shared Partition Structure

Partition Fields

Description

ExtTrigger2

If this partition receives a write access, specifies whether this partition can
generate a trigger signal to an external connector. Specify one of:

'off' (default) — Prevents the partition from generating signals.

'first' — Allows only the first double word of the memory segment to be
marked with the corresponding Auxiliary Control RAM bit.

'all' — Allows all memory locations of the memory segment to be marked
with the corresponding Auxiliary Control RAM bit.

'last' — Allows only the last double word of the memory segment to be
marked with the corresponding Auxiliary Control RAM bit.

HIPRO

Specifies whether the elements in this partition can be transmitted as one
network message. Specify one of:

'off' (default) — Prevents the partition from transmitting the elements as one
message

‘on' — Allows the partition to transmit the elements as one message

Internal

Reserved for internal use.

Alignment Examples

This example sh

ows the shared memory map with default alignment values.

Partitionl(1l).Type='int32"';

Partitionl(1l).Size='1";

Partitionl(2).Type='boolean';

Partitionl(2).Size='1";

Partitionl(3).Type='uint32';

Partitionl(3).Size='1";

Partitionl = completepartitionstruct(Partitionl, 'scramnet');

This example sh

ows the shared memory map with alignment value changed from 4 to 1 in the second

partition.

Partitionl(1l).Type='int32"';

Partitionl(1l).Size='1";

Partitionl(1l).Alignment="4";

Partitionl(2).Type='boolean';

Partitionl(2).Size='1";

Partitionl(2).Alignment="1";

Partitionl(3).Type='uint32';

Partitionl(3).Size='1";

Partitionl = completepartitionstruct(Partitionl, 'scramnet');

22-15

22 Shared Memory Support

This example shows the shared memory map with alignment value changed from 4 to 2 in the second
partition.

Partitionl(1l).Type='int32';
Partitionl(1l).Size='1";
Partitionl(1l).Alignment="4";

Partitionl(2).Type='boolean';
Partitionl(2).Size='1";
Partitionl(2).Alignment='2";

Partitionl(3).Type='uint32"';
Partitionl(3).Size='1";
Partitionl = completepartitionstruct(Partitionl, 'scramnet');

22-16

Curtiss-Wright Shared Node Initialization Structure

Curtiss-Wright Shared Node Initialization Structure

A node initialization structure has the following fields:

Interface: [1x1 struct]
Partitions: [1x1 struct]

where
Node Structure Description
Fields
Interface Specifies settings for the board Control/Status Register (CSR). The Interface
structure has the following fields. Refer to the board product documentation
for a description of the CSR and its operation modes.
* Mode — Configures board modes (see “Board Mode” on page 22-17)
* Timeout — Enables the board to set the timeout value (see “Board
Timeout” on page 22-18)
* DataFilter — Controls the data filtering operation (see “Board Data
Filter” on page 22-18)
* VirtualPaging — Controls the board virtual paging operation (see
“Virtual Paging” on page 22-19)
* Interrupts — Enables the board to generate and receive interrupts from
the network (see “Board Interrupts” on page 22-19)
* Internal — Reserved for internal use
Partitions Stores the shared memory segments (see “Create Curtiss-Wright Shared
Partitions” on page 22-10)
Board Mode

The Systranshared memory board has modes that you can set through the Interface.Mode field.
The Interface Mode fields set the corresponding bits in the CSR. To display the board mode fields,

type:

>> node.Interface.Mode
ans =
NetworkCommunicationsMode: 'TransmitReceive'
InsertNode: 'on'
DisableFiberOpticLoopback: 'on'
EnableWireLoopback: 'off'
DisableHostToMemoryWrite: 'off'
WriteOwnSlotEnable: 'off'
MessageLengthLimit: '256'
VariableLengthMessagesOnNetwork: 'off'
HIPROEnable: 'off'
MultipleMessages: 'on'
NoNetworkErrorCorrection: 'on'
MechanicalSwitchOverride: 'on'
DisableHoldoff: 'on'

These modes have the following values:

22-17

22 Shared Memory Support

Field Values Default CSR
NetworkCommunications Mode ‘none’, "transmit CSR3[8..15]

'receiveonly’, receive'

"transmitonly',

"transmit

receive'
InsertNode 'off', 'on' ‘on' CSRO[0..1]
DisableFiberOptic Loopback 'off', 'on' ‘on' CSR2[6]
EnableWire Loopback 'off', 'on' 'off' CSR2[7]
DisableHost ToMemory Write 'off', 'on' 'of ' CSR2[8]
WriteOwnSlotEnable 'off', 'on' 'of ' CSR2[9]
Message LengthLimit '256', '1024"' '256' CSR2[11]
Variable Length MessagesOn Network ‘off', 'on' ‘of f' CSR212]
HIPROEnable 'off', 'on' 'off' CSR2[13]
Multiple Messages 'off', 'on' ‘on' CSR2[14]
NoNetwork Error Correction ‘off', 'on' ‘on' CSR2[15]
Mechanical Switch Override ‘off', 'on' ‘on' CSR8[11]
Disable Holdoff 'off', 'on' ‘on' CSR8[11]

Board Timeout

The Systranshared memory board allows you to set the network timeout through the
Interface.Timeout field. The Interface Timeout fields set the corresponding bits in the CSR.

To display the timeout fields, type:

>> node.Interface.Timeout
ans =

NumOfNodesInRing: '2'
TotalCableLengthInM: '2°

These fields have the following values:

Field Values Default CSR
NumOfNodes InRing ‘0' to '255' ‘2 CSR5
TotableCable LengthInM '0' to 'n' ‘2" CSR5

Refer to the board product documentation for a description of these fields.

Board Data Filter

The Systranshared memory board allows you to set the data filter operation through the
Interface.DataFilter field. The Interface DataFilter fields set the corresponding bits in the CSR.

>> node.Interface.DataFilter

ans =

EnableTransmitDataFilter: 'off'

22-18

Curtiss-Wright Shared Node Initialization Structure

EnablelLower4KBytesForDataFilter: 'off'
>>

These fields have the following values:

Field Values Default CSR
Enable TransmitData Filter ‘off', 'on' ‘off' CSRO[10]
EnableLower4KBytesFor DataFilter 'off', 'on' 'off' CSRO[11]
Virtual Paging
The Systran shared memory board allows you to set the bits of the Virtual Paging Register operation
through the Interface.VirtualPaging field. The Interface VirtualPaging fields set the
corresponding bits in the CSR.
>> node.Interface.VirtualPaging
ans =
VirtualPagingEnable: 'off'
VirtualPageNumber: '0'
These fields have the following values:
Field Values Default CSR
VirtualPagingEnable 'off', 'on' ‘off' CSR12[0]
VirtualPage Number '0' to '2047' ‘0’ CSR12[5..15]
Board Interrupts
The Systran shared memory board allows you to specify the interrupt sources transmitted and
received between the nodes of the network. You can set these bits through the
Interface.Interrupts field. The Interface Interrupts fields set the corresponding bits in the CSR.
>> node.Interface.Interrupts
ans =
HostInterrupt: 'off'
InterruptOnMemoryMaskMatch: 'off'
OverrideReceivelInterrupt: 'off'
InterruptOnError: 'off'
NetworkInterrupt: 'off'
OverrideTransmitInterrupt: 'off'
InterruptOnOwnSlot: 'off!'
ReceivelnterruptOverride: 'off'
These fields have the following values:
Field Values Default CSR
HostInterrupt "off', 'on' "off' CSRO[3]
InterruptOn MemoryMask Match 'off', 'on' 'off' CSRO[5]
Override Receive Interrupt 'off', 'on' 'off' CSRO[6]
InterruptOn Error 'off', 'on' "off' CSRO[7]

22-19

22 Shared Memory Support

Field Values Default CSR
Network Interrupt 'off', 'on' 'off' CSRO[8]
Override Transmit Interrupt 'off', 'on' 'off' CSRO[9]
InterruptOn OwnSlot 'off', 'on' 'off' CSR2[10]
Receive Interrupt Override ‘off', 'on' 'off' CSR8[10]

22-20

Video, XCP

21

Video Image Processing

* “Process Video Images with Simulink Real-Time” on page 23-2
* “USB Video Display on Development Computer” on page 23-3
* “USB Video Display on Target Computer” on page 23-4

» “Serial Camera Configuration” on page 23-5

23 Vvideo Image Processing

Process Video Images with Simulink Real-Time

The Simulink Real-Time software supports webcams compliant with the USB Video Class (UVC)
standard and cameras compliant with the Automated Imaging Association Camera Link® standard.

Note UVC-compliant cameras are often referred to as "driverless webcams". For more information,
see your camera documentation.

Using blocks from the Simulink Real-Time Video library, on your target computer, you can do the
following:

* Acquire real-time video frames from cameras connected to the target computer.

* Display the real-time image on the target computer monitor.

* Process or reduce the real-time image, for instance to specify a region of interest.

* Compress video frames acquired on the target computer.

* Stream video frames acquired on the target computer to the development computer.
Using blocks from the Computer Vision Toolbox™ or Image Processing Toolbox™, on your
development computer, you can do the following:

* Receive images from the target computer.

* Decompress video frames on the development computer.

* Process or reduce images.

* Display images on the development computer.

23-2

USB Video Display on Development Computer

USB Video Display on Development Computer

The following workflow acquires and displays video frames using a USB Video Class (UVC) compliant
webcam. To view the images on the development computer, compress the video frames on the target
computer and transmit them to the development computer. You then decompress and display the
video frames.

1

Enable USB general support on the target computer. See Speedgoat target computer
documentation.

Acquire a USB Video Class (UVC) compliant webcam, and then connect it to the target computer
USB port.

To query the available camera configurations, add the USB Video Device List block.

Add the image input block From USB Video Device to the portion of the model that runs on the
target computer. Configure the block as required.

If your USB camera does not support on-chip JPEG compression, add the JPEG Compression
block to the target computer portion. Connect this block to the output of the image input block.

Add the Image Transmit block to the target computer portion. Connect this block to the output of
the compression block. Configure the block to transmit frames to the development computer.

Add the Image Receive block to the portion of the model that runs on the development computer.
Configure the block to receive frames from the target computer.

Add the JPEG Decompression block to the development computer portion. Connect this block to
the output of the Image Receive block.

Add the To Video Display block from the Computer Vision Toolbox to the development computer
portion.

10 Build and download the target computer portion of the model to the target computer.

11 Run the development computer portion of the model on the development computer.

23-3

23 Video Image Processing

USB Video Display on Target Computer

23-4

The following workflow acquires and displays video frames using a USB Video Class (UVC) compliant
webcam. To view the images on the target computer, use a Video Display block.

1

Enable USB general support on the target computer. See Speedgoat target computer
documentation.

Acquire a USB Video Class (UVC) compliant webcam, and then connect it to the target computer
USB port.

To query the available camera configurations, add the USB Video Device List block.

Add the image input block From USB Video Device to the portion of the model that runs on the
target computer. Configure the block as required.

Record the setting of the Image signal parameter.

Add the Video Display block. Set its Image signal parameter to match the corresponding setting
in the From USB Video Device block.

Build and download the target computer portion of the model to the target computer.
Execute the model on the target computer.

Serial Camera Configuration

Serial Camera Configuration

To enter a serial command for the camera, enter it without quotation marks in the Camera
configuration serial command text box.

Enter multiple commands as one line without white space.

Each camera manufacturer has a serial command set documented in the manual for each camera or
family of cameras. Each command set is different from any other. For example, suppose that you want
to put a camera from the given series into triggered mode and to set the shutter time to 1 ms. Use
these settings and serial setup commands.

Camera Series Mask Settings Serial Setup
CIS VCC G21 9600 baud 000000WO04001\r
8 bits 000000WO02005\r
No parity
Pulnix TM1400 9600 baud :SAS\r
8 bhits
No parity
Sony XCL 38,400 baud SHUTTER 7\r
8 bits TRG_MODE 1I\r
No parity
Cohu 7800 9600 baud \002\0377cE2,10chk\003
8 bits \002\0377cM2chk\003
No parity \002\0377T0O, 1chk\003
chk is a checksum for the given
portion of the message.

For your camera, find the required command codes in the manufacturer documentation for that
specific camera. If those codes are not in the manual, contact the camera manufacturer.

Some cameras return a success or failure value in response to the serial command. The image input
block dialog box includes a check box to allow the software to display such values. Some responses
include non-printable control characters, displayed as C escape sequences.

Escape Sequence Control Character Definition

\r CR Carriage Return

\002 STX Start of Text

\003 ETX End of Text

\006 ACK Acknowledge

\025 NACK Negative Acknowledge

23-5

23 Video Image Processing

23-6

Some camera manufacturers offer Windows utilities to send configuration commands to their
cameras. Using such a utility, you can configure the camera on Windows and save the settings on the
camera. You can then connect the camera to the target computer and use it.

Other camera manufacturers require a special serial cable that connects the serial communication
line of the camera to a separate serial connection. In this case, you cannot initialize the camera using
settings in the Camera configuration serial command section. Instead, you connect the DB9 to a
serial port on the development computer and use manufacturer software to configure the camera
before use.

Video Blocks

24 Video Blocks

24-2

From USB Video Device

From USB Video Device block
Library: Simulink Real-Time / Video / USB Camera

Image [

Description

The From USB Video Device block enables you to acquire real-time video frames or still images from
a USB Video Class (UVC) webcam. You attach the webcam to a USB port on the target computer.
After you acquire the image, you can:

* Display the output on the target computer monitor using a Video Display block.

» Stream captured frames to the development computer display (for example, using the To Video
Display block from Computer Vision Toolbox).

* Analyze the image signals on the development computer.

* Compress or decompress the input signal with the JPEG Compression or JPEG Decompression
blocks.

When you add this block, also add the USB Video Device List block to help configure the webcam.

The Image signal setting determines the Image signal setting for blocks receiving this signal, such
as the Video Display block.

Note When you execute a model containing a From USB Video Device block on a single-core target
computer, insufficient time is sometimes available to process frames received through the USB port.
Under these conditions, the block can drop frames. If the block is dropping frames, specify a larger
frame interval, lengthen the sample time, or use a multicore target computer.

Parameters

Configuration — USB video device configuration
<Select a configuration> (default)

Select a configuration that you specified in the USB Video Device List block. When you click the
Reload Device List button on the USB Video Device List block, this configuration list is updated.

Programmatic Use
Block Parameter: sconf

Port address (-1 for any) — Address of port for webcam
-1 (default)

Specify the port to which the webcam is attached. Enter -1 for any USB port.

From USB Video Device

Programmatic Use
Block Parameter: paddr

Image width — Width of image from USB port
320 (default)

Enter the width of the image input from the USB port, in pixels.

Programmatic Use
Block Parameter: iwidth

Image height — Height of image from USB port
240 (default)

Enter the height of the image input from the USB port, in pixels.

Programmatic Use
Block Parameter: iheight

Frame interval — Sample time between frames
1/60 (default) | 1/30|1/25|1/20|1/15|1/10|1/7.5|1/5

Select the sample time between frame transfers.

Programmatic Use
Block Parameter: fint

Frame format — Incoming frame compression
Uncompressed (default) | MJPEG

Select whether the incoming frames are to be compressed. If MJPEG, compress frames using Motion
JPEG format. Each frame is individually compressed as a JPEG image. Selecting this option disables
the Color format and Image signal parameters.

Programmatic Use
Block Parameter: ffmt

Color format — Color encoding for output frames
RGB24 (8:8:8) (default) | YCbCr (4:2:2)

Select the color format for the incoming frames.

Programmatic Use
Block Parameter: cfmt

Image signal — Image signal dimension
One multidimensional signal (default) | Separate color signals

* One multidimensional signal

One signal where each dimension contains color information. Selecting this option creates one
port, Image.

* Separate color signals

Multiple color signals where each signal contains the information for one color. Selecting this
option creates the following ports, depending upon the colorspace.

24-3

24 Video Blocks

24-4

* RGB: ports R, G, B
* YCbCr: ports Y, Ch, Cr

Programmatic Use
Block Parameter: isig

Show trigger input — Show block trigger input
off (default) | on

Select this check box to display an input port, Trigger, for the block.

Programmatic Use
Block Parameter: trigger

Show length output — Show block length output
off (default) | on

Select this check box to display an output port, Length, for the block.

Programmatic Use
Block Parameter: vindex

See Also

Topics
“Serial Camera Configuration” on page 23-5

Introduced in R2011a

Image Receive

Image Receive

Receive video image
Library: Simulink Real-Time / Video / Video Utilities

Diata [

Status [»

Description

Specify the source computer that the Image Receive block receives a video image from by using the
IPv4 address-and-port pair.

Ports
Output Arguments

Data — Video data received by block
[byte]

Byte vector containing video data received by the block.

Status — Status of frame capture
1|0

Outputs 1 if the block received a full fixed-length frame. Otherwise, outputs 0.
Dependency
This output is available when the Allow variable length packets check box is not selected.

Length — Number of bytes received
numeric

Outputs the number of bytes that the block received.

Dependency

This output replaces the Status output when you select the Allow variable length packets check
box.

Parameters

IP address to receive from (0.0.0.0 for accepting all) — Source IP address
'0.0.0.0' (default) | 'xx.xx.xx.xx'

Enter a valid IPv4 address as a dotted decimal character vector for the source address, for example,

10.10.10.3. You can also use a MATLAB expression that returns a valid IPv4 address as a character
vector.

24-5

24 Video Blocks

24-6

The default address, 0.0.0.0, enables the block to accept frames from any accessible computer. If you
set this parameter to a specific IP address, packets arriving from only that IP address are received.

The IP port to receive from parameter specifies the port for the source.

Programmatic Use
Block Parameter: ipAdd

IP port to receive from — Source port
numeric

Specify the port of the computer from which to receive the video frames.

The IP address to receive from parameter specifies the IP address for the source.

Programmatic Use
Block Parameter: ipPort

Output port width (number of bytes) — Number of bytes that the block can propagate
50 * 1024 (default) | numeric

Number of bytes that the block can output in one sample time.

Allow variable length packets is selected:

* Data size > Output port width — Block ignores the packet.

* Data size = Output port width — Block outputs packet data through the Data port and packet
length through the Length port. Use packet length to consume data.

Allow variable length packets is not selected:

* Data size # Output port width — Block ignores the packet.

* Data size = Output port width — Block outputs packet data through the Data port. The Status
port is set to 1.

Programmatic Use
Block Parameter: width

Allow variable length packets — Receive variable-length frames
0 (default) | 1

Select this check box to enable the reception of variable-length frames. For example, use this option
for compressed frames because the length of each frame varies.

Selecting this parameter replaces the default Status output port with the Length output port.

Programmatic Use
Block Parameter: vblLen

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Image Receive

Programmatic Use
Block Parameter: sampletime

See Also
Image Transmit

Topics
“Serial Camera Configuration” on page 23-5

Introduced in R2011a

24-7

24 Video Blocks

Image Transmit

Transmit video frame

Library: Simulink Real-Time / Video / Video Utilities / Baseboard

Serial Internal blocks

Simulink Real-Time / Video / Video Utilities Noata
Description

The Image Transmit block sends the video frame from one computer to another computer. The
computers can be two target computers or one development computer and one target computer.
Specify the destination computer by IPv4 address-and-port pair.

Ports
Input

Data — Video data to transmit
[byte]

Byte vector containing video data for the block to transmit.

Length — Number of bytes of video data
numeric

Number of bytes to transmit.

Dependency

This input is available when you select the Allow variable length packets check box.

Parameters

IP address sent to (255.255.255.255 for broadcast) — Computer IP address
'255.255.255.255" (default) | 'xx.xx.xx.xx'

Specify the IPv4 address of the computer to which you send the video frames. To broadcast the video
frames to all listening computers, enter 255.255.255.255. The Remote IP port to send to
parameter specifies the port for the destination.

Programmatic Use
Block Parameter: ipAdd

Remote IP port to send to — Computer port
numeric

Specify the computer port to which you send the video frames. The IP address sent to
(255.255.255.255 for broadcast) parameter specifies the IP address for the destination.

24-8

Image Transmit

Programmatic Use
Block Parameter: ipPort

Use the following local IP port (-1 for automatic port assignment) — Local
computer port
numeric

Specify the computer port from which to send the video frames.

To assign automatically a port for the computer, enter - 1.

Programmatic Use
Block Parameter: localPort

Allow variable length packets — Transmit variable-length frames
0 (default) | 1

Select this check box to enable the transmission of variable-length frames. For example, use this
option for compressed frames because the length of each frame varies.

If you select this check box, the Data port sends the actual data. The Length input port sends the
number of bytes being transmitted. If the port size is less than Length, the block sends up to the port
size.

If this check box is not selected (default), the block sends only fixed-length packets.

Selecting this parameter displays the Length output port.

Programmatic Use
Block Parameter: vblLen

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sampletime

See Also
Image Receive

Topics
“Serial Camera Configuration” on page 23-5

Introduced in R2011a

24-9

24 Video Blocks

JPEG Compression

JPEG Compression block

Library: Simulink Real-Time / Video / Video Utilities / Baseboard

Serial Internal blocks

Simulink Real-Time / Video / Video Utilities ¥ image Data P
Description

The JPEG Compression block compresses the video frame received by the target computer.

Ports
Input

Image — Image to compress
uncompressed data

Video frame to compress
Output

Data — Compressed video data
compressed data

Vector of byte containing video data compressed by block.

Length — Compressed data lenght
double

Visible when the Show output image length check box is set.

Parameters

Compression quality (-1l:default) — Compression level for incoming video data
-1 (default)

Enter a value between 0 and 100 to specify how much to compress the incoming video frame. The
lower the value, the less the compression quality.

Enter -1 to use the default compression quality for the video frame.

Programmatic Use
Block Parameter: quality

Input colorspace — Colorspace of input image
RGB (default) | Grayscale | YCbCr 4;4:4 | RGB

One of the following:

24-10

JPEG Compression

* Grayscale

Compress the video frame using a grayscale color space scheme.
* YCbCr 4;4:4

Compress the video frame using the YCbCr color space scheme.
* RGB

Compress the video frame using the red, blue, green (RGB) color space scheme.

Programmatic Use
Block Parameter: cspace

Image signal — Signal dimension
One multidimensional signal (default)

* One multidimensional signal

One signal where each dimension contains color information. Selecting this option creates one
port, Image.

* Separate color signals

Multiple color signals where each signal contains the information for one color. Selecting this
option creates the following ports, depending upon the colorspace.

* Grayscale: port Image
* RGB:portsR, G, B
* YCbCr: ports Y, Cb, Cr

Programmatic Use
Block Parameter: isig

Max output image size (bytes) — Maximum size of compressed video frame
1024*1024 (default)

Enter the maximum output size for the compressed video frame, in bytes. Use format height *
width.

Programmatic Use
Block Parameter: maxsize

Show output image length — Show length output
off (default) | on

Select this check box to output the video frame length. Selecting this check box displays the Length
port.

Programmatic Use
Block Parameter: length

See Also
JPEG Decompression

24-11

24 Video Blocks

Introduced in R2011a

24-12

JPEG Decompression

JPEG Decompression

JPEG Decompression block

Library: Simulink Real-Time / Video / Video Utilities / Baseboard

Serial Internal blocks

Simulink Real-Time / Video / Video Utilities MData Image [
Description

The JPEG Decompression block decompresses the video frame received by the target computer.

Ports
Input

Data — Video data for decompression
vector of byte

Vector of byte containing video data for the block to decompress.

Trigger — Video decompression trigger
active high

Trigger for video decompression, active high.
Visible when the Show trigger input check box is set.
Output

Image — Decompressed video data
data

Decompressed video frame

Parameters

Image width — Image width in bytes
320 (default)

Specify the width, in bytes, of the video frame to be decompressed.

Programmatic Use
Block Parameter: width

Image height — Image height in bytes
240 (default)

Specify the height, in bytes, of the video frame to be decompressed.

24-13

24 Video Blocks

24-14

Programmatic Use
Block Parameter: height

Output colorspace — Video output colorspace
RGB (default) | Grayscale | YCbCr 4;4:4

One of the following:
* Grayscale

Compress the video frame using a grayscale color space scheme.
* YCbCr 4;4:4

Compress the video frame using the YCbCr color space scheme.
* RGB
Compress the video frame using the red, blue, green (RGB) color space scheme.

Programmatic Use
Block Parameter: cspace

Image signal — Signal dimension
One multidimensional signal (default)

* One multidimensional signal

One signal where each dimension contains color information. Selecting this option creates one
port, Image.
» Separate color signals

Multiple color signals where each signal contains the information for one color. Selecting this
option creates the following ports, depending upon the colorspace.

* Grayscale: port Image
* RGB: ports R, G, B
* YCbCr: ports Y, Ch, Cr

Programmatic Use
Block Parameter: isig

Show trigger input — Show trigger input on block
off (default) | on

Select this check box to display an input port, Trigger, for the block.

Programmatic Use
Block Parameter: trigger

See Also
JPEG Compression

Introduced in R2011a

USB Video Device List

USB Video Device List

USB Video Device List block
Library: Simulink Real-Time / Video / USB Camera

Description

When you connect a USB Video Class (UVC) webcam to the target computer, the USB Video Device
List block probes the device and displays the manufacturer information of the webcam. Based on this
information, the block configures its parameters with supported options. You can choose the
configuration parameters required by your USB webcam, and then name the configuration for future
use.

When you add the From USB Video Device block to your model, add the USB Video Device List block.
You need the USB Video Device List block to configure the webcam.

Parameters

Manufacturer — Webcam manufacturer
select from list

Select the manufacturer for the installed webcam.

Programmatic Use
Block Parameter: not applicable

Format — Webcam format
select from list

Select an image format that the connected webcam supports, for example, MJPEG.

Programmatic Use
Block Parameter: not applicable

Resolution — Webcam resolution
select from list

Select a supported resolution for the image.

Programmatic Use
Block Parameter: not applicable

Interval — Video frame sample time
select from list

Select the sample time for the video frame.

Programmatic Use
Block Parameter: not applicable

24-15

24 Video Blocks

Configurations — Configuration name
text

Use this parameter to store and name a particular configuration. A configuration consists of the
settings that you select for a particular webcam.

After you select the options in the other parameters:

1 In the edit field, enter a name for the configuration.
2 Click the Add button to add the configuration.
To remove the configuration, click the Remove button.

Programmatic Use
Block Parameter: not applicable

Reload Device List — Refresh device list
none

Click this button to refresh the list of webcam information. Clicking this button also updates the mask
and parameters for the From USB Video Device block.

Programmatic Use
Block Parameter: not applicable

See Also
Image Receive

Topics
“Serial Camera Configuration” on page 23-5

Introduced in R2011a

24-16

Video Display

Video Display
Video Display block

Library: Simulink Real-Time / Displays and Logging
Simulink Real-Time / Video / Video Utilities

Description

When you add the Video Display block to your model, you can display an RGB video signal on the
target computer. The signal can come from a USB Video webcam or a constant block.

The Image signal setting must match the Image signal setting for the camera output block.

There can be no more than two Video Display blocks in a model. The combined number of Video
Display blocks and target scopes cannot exceed nine.

Parameters

Image signal — Dimension of Image signal
One multidimensional signal (default) | Separate color signals

* One multidimensional signal

One signal where each dimension contains color information. Selecting this option creates one
port.

* Separate color signals

Multiple color signals where each signal contains the information for one color. Selecting this
option creates three ports.

Programmatic Use
Block Parameter: imagesignal

Image colorspace — Colorspace of image
RGB (default)

Can only be RGB.

Programmatic Use
Block Parameter: colorspace

See Also
“Target Scope Usage”

Introduced in R2014b

24-17

XCP Master Mode

25 XCP Master Mode

XCP Master Mode

25-2

The Universal Measurement and Calibration Protocol (XCP) is a network protocol that you can use to
connect calibration systems to electronic control units (ECUs).

A node in the network can run in either master mode or slave mode. Simulink Real-Time supports
using XCP in master mode to replace (bypass) a subsystem of the ECU controller. The bypass model
applies stimulus to the subsystem output signals and acquires signal response from the ECU
controller.

To support XCP master mode, the Simulink Real-Time software provides the XCP sublibrary. You can:

o Parse A2L (ASAP2 database) files.

* Synchronize one or more slave or ECU devices.

* [Initialize an XCP slave server running in an ECU.

* Apply stimulus data.

* Acquire real-time measurement data when specific events occur.

To create models to run in master mode:
* Provide an A2L (ASAP2) format file that contains signal and parameter access information for the
slave ECUs and for the XCP-specific network elements.

* Provide an XCP Configuration block to load the A2L data into the XCP database.

* Provide one XCP CAN Transport Layer or XCP UDP Transport Layer block for each XCP
Configuration block.

Simulink Real-Time supports XCP implemented by using FIFO mode CAN or real-time UDP as
transport protocols.

* Apply stimulus data to the slave device by using the XCP Data Stimulation block.

* Acquire measurement data from the slave device by using the XCP Data Acquisition block.

See Also
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Data Stimulation | XCP CAN
Transport Layer | XCP UDP Configuration | XCP UDP Data Acquisition | XCP UDP Data Stimulation

More About

. “CAN”

. “Real-Time UDP”

. “Third-Party Calibration Support”

XCP Blocks

26 XxCP Blocks

26-2

XCP CAN Transport Layer

Generate and consume XCP messages that are transported by CAN hardware
Library: Simulink Real-Time / XCP

)CAN CAN>

Mg yopcan Me8
Transport Layer

I Mp

Description

The XCP CAN Transport Layer block handles CAN messages that your model transmits or receives
with Simulink Real-Time CAN library blocks.

Connect the input side of the block to a block that receives CAN messages. Connect the output side of
the block to a block that transmits the XCP messages over CAN. Set up the transmitting block so that
a CAN message is sent only when an XCP message is available. Otherwise, the block sends 0 byte
data when XCP messages are not available, causing undefined behavior.

Ports
Input

CAN Msg — CAN MESSAGE structures being consumed
vector

Vector of CAN MESSAGE structures being consumed

N — Number of messages
integer

Number of messages in the vector
Output

CAN Msg — CAN MESSAGE structures being generated
vector

Vector of CAN MESSAGE structures being generated

N — Number of messages
integer

Number of messages in the vector
See Also

XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Data Stimulation | XCP CAN
Transport Layer

External Websites
www.asam.net

https://www.asam.net

XCP CAN Transport Layer

Introduced in R2014a

26-3

26 XxCP Blocks

26-4

XCP CAN Configuration

Configure XCP slave connection
Library: Simulink Real-Time / XCP / CAN
Vehicle Network Toolbox / XCP Communication / CAN

XCP CAN
Configuration

Description

The XCP CAN Configuration block uses the parameters specified in the A2L file and the ASAP2
database to establish an XCP slave connection.

Before you acquire or stimulate data, specify the A2L file to use in your XCP CAN Configuration . Use
one XCP CAN Configuration to configure one slave connection for data acquisition or stimulation. If
you add XCP CAN Data Acquisition and XCP CAN Data Stimulation blocks, your model checks to see
if there is a corresponding XCP CAN Configuration block. If there is no corresponding XCP CAN
Configuration block, the model prompts to add one.

Other Supported Features

The XCP CAN communication blocks support Simulink accelerator mode and rapid accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information about
these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters

Config name — Specify XCP CAN session hame
"CAN_Configl' (default)

Specify a unique name for your XCP CAN session.
Programmatic Use

SlaveName

A2L File — Select an A2L file
file name

Click Browse to select an A2L file for your XCP CAN session.
Programmatic Use

A2LFile

Enable seed/key security — Select that key required to establish connection
"off'

Select this option if your slave requires a secure key to establish connection. Select a file that
contains the seed/key definition to enable the security.

XCP CAN Configuration

Programmatic Use

EnableSecurity

File (*.DLL) — Select file for seed and key security
file name

If you select Enable seed/key security (EnableSecurity), this field is enabled. Click Browse to
select the file that contains seed and key security algorithm that unlocks an XCP slave module. This
parameter is available on in Windows Desktop Simulation for Vehicle Network Toolbox.

Programmatic Use

SeedKeyLib

Output connection status — Display connection status
"off'

Select this option to display the status of the connection to the slave module. Selecting this option
adds a new output port.

Programmatic Use

EnableStatus

See Also

Blocks
XCP CAN Transport Layer | XCP CAN Data Acquisition | XCP CAN Data Stimulation

Introduced in R2013a

26-5

26 XxCP Blocks

26-6

XCP CAN Data Acquisition

Acquire selected measurements from configured slave connection
Library: Simulink Real-Time / XCP / CAN
Vehicle Network Toolbox / XCP Communication / CAN XGP CAN

Diata Acquisition

~

Description

The XCP CAN Data Acquisition block acquires data from the configured slave connection based on
the selected measurements. The block uses the XCP CAN transport layer to obtain raw data for the
selected measurements at the specified simulation time step. Configure your XCP connection and use
the XCP CAN Data Acquisition block to select your event and measurements for the configured slave
connection. The block displays the selected measurements as output ports.

Other Supported Features

The XCP communication blocks support the use of Simulink accelerator mode and rapid accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters

Config name — Specify XCP CAN session hame
select from list

Select the name of XCP configuration you want to use. The list displays all available names specified
in the XCP CAN Configuration blocks in the model. Selecting a configuration displays events and
measurements available in the A2L file of this configuration.

Note You can acquire measurements for only one event by using an XCP CAN Data Acquisition block.
Use one block for each event whose measurements you want to acquire.

Programmatic Use

SlaveName

Event name — Select an event
select from list

Select an event from the available list of events. The XCP CAN Configuration block uses the specified
A2L file to populate the events list.

Programmatic Use

EventName

XCP CAN Data Acquisition

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

: - :
want to use and click the add button, _| to add it to the selected measurements. Hold the Ctrl key
on your keyboard to select multiple measurements.

In the Block Parameters dialog box, type the name of the measurement you want to use in the
Search box. The All Measurements lists displays a list of all matching names. Click the x

[Triangle x

to clear your search.
Programmatic Use

AllMeasurements

Selected Measurements — List selected measurements
measurement names

This list displays selected measurements. To remove a measurement from this list, select the
measurement and click the remove button, il
2|

In the Block Parameters dialog box, use the toggle buttons £ to reorder the selected
measurements.

Programmatic Use

SelectedMeasurements

Force Datatypes and Allow Non-Scalar — Set the port data type according to the type
definition in the A2L file
'off' (default) | 'on'

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
When the parameter value is set to 'on"', the block:

» Sets the port data type according to the type definition in the A2L file

* Supports up to three-dimensional XCP measurements in Simulink

These ASAP2 data types are supported by corresponding Simulink port data types. SBYTE, UWORD,
SWORD, ULONG, SLONG , A UINT64, A INT64, FLOAT32 IEEE, and FLOAT64 TIEEE.

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. MATLAB default operation treats matrices as row-major. An XCP measurement can have
LAYOUT as COLUMN DIR or ROW DIR. If a matrix measurement is COLUMN DIR, the blocks
rearranges the measurement in memory and ensures that the matrix (row X, col Y) in MATLAB refers
to the same entry as (row X, col Y) on the ECU. The rearrangement causes matrix entries that are
contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

Programmatic Use

ForceDatatypes

26-7

26 XxCP Blocks

26-8

DAQ List Priority — Specify a priority value for slave device driver
priority value

Specify a priority value as an integer from 0 to 255 for the slave device driver to prioritize
transmission of data packets. The slave can accumulate XCP packets for lower priority DAQ lists
before transmission to the master. A value of 255 has the highest priority. The SET DAQ LIST MODE
command communicates the DAQ List Priority value from master to slave. This communication
method differs from the specification of the Event Channel Priority property, which comes from the
A2L file.

Programmatic Use
DAQPriority

Sample time — Specify sampling time of block
0.01 (default)

Specify the sampling time of the block during simulation, which is the simulation time. This value
defines the frequency at which the XCP CAN Data Acquisition block runs during simulation. If the
block is inside a triggered subsystem or is to inherit sample time, you can specify -1 as your sample
time. You can also specify a MATLAB variable for sample time. The default value is 0.01 (in seconds).

Programmatic Use

SampleTime

Enable Timestamp — Enable reading timestamp from incoming DTO packets
off (default) | on

When the Timestamp is enabled, the block reads the timestamp from incoming DTO packets and
outputs the timestamp to Simulink. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Programmatic Use

EnableTimestamp

See Also

Blocks
XCP CAN Configuration | XCP CAN Data Stimulation | XCP CAN Transport Layer

Introduced in R2013a

XCP CAN Data Stimulation

XCP CAN Data Stimulation

Perform data stimulation on selected measurements
Library: Simulink Real-Time / XCP / CAN
Vehicle Network Toolbox / XCP Communication / CAN 3 XCP CAN

Data Stimulation

Description

The XCP CAN Data Stimulation block sends data to the selected slave connection for the selected
event measurements. The block uses the XCP CAN transport layer to output raw data for the selected
measurements at the specified stimulation time step. Configure your XCP session and use the XCP
CAN Data Stimulation block to select your event and measurements on the configured slave
connection. The block displays the selected measurements as input ports.

Other Supported Features

The XCP communication blocks support Simulink accelerator mode and rapid accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information about
these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters

Config name — Specify XCP CAN session nhame
select from list

Select the name of XCP configuration that you want to use. The list displays all available names
specified in the available XCP CAN Configuration blocks in the model. Selecting a configuration
displays events and measurements available in the A2L file of this configuration.

Note You can stimulate measurements for only one event by using an XCP CAN Data Stimulation
block. Use one block for each event whose measurements you want to stimulate.

Programmatic Use

SlaveName

Event name — Select an event
select from list

Select an event from the event list. The XCP CAN Configuration block uses the specified A2L file to
populate the events list.

Programmatic Use

EventName

26-9

26 XxCP Blocks

26-10

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

, L3 .
want to use and click the add button, _| to move it to the selected measurements. Hold the Ctrl
key on your keyboard to select multiple measurements.

In the block parameters dialog box, type the name of the measurement you want to use in the Search
box. The All Measurements lists displays a list of all matching names. Click the x

[Triangle x

to clear your search.
Programmatic Use

AllMeasurements

Selected Measurements — List selected measurements
measurement names

This list displays your selected measurements. To remove a measurement from this list, select the
measurement and click the remove button, il
2|

In the Block Parameters dialog box, use the toggle buttons £ to reorder the selected
measurements.

Programmatic Use

SelectedMeasurements

Force Datatypes and Allow Non-Scalar — Set the port data type according to the type
definition in the A2L file
'off' (default) | 'on'

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
When the parameter value is set to 'on"', the block:

» Sets the port data type according to the type definition in the A2L file
* Supports up to three-dimensional XCP measurements in Simulink

These ASAP2 data types are supported by corresponding Simulink port data types. SBYTE, UWORD,
SWORD, ULONG, SLONG , A UINT64, A INT64, FLOAT32 IEEE, and FLOAT64 TIEEE.

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. MATLAB default operation treats matrices as row-major. An XCP measurement can have
LAYOUT as COLUMN DIR or ROW DIR. If a matrix measurement is COLUMN DIR, the blocks
rearranges the measurement in memory and ensures that the matrix (row X, col Y) in MATLAB refers
to the same entry as (row X, col Y) on the ECU. The rearrangement causes matrix entries that are
contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

Programmatic Use

ForceDatatypes

XCP CAN Data Stimulation

Enable Timestamp — Enable sending Simulink timestamp in STIM DTO packets
off (default) | on

When the Timestamp is enabled, the block inputs a timestamp from Simulink and sends the
timestamp in the STIM DTO packets. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Programmatic Use

EnableTimestamp

See Also

Blocks
XCP CAN Configuration | XCP CAN Transport Layer | XCP CAN Data Acquisition

Introduced in R2013a

26-11

26 XxCP Blocks

26-12

XCP UDP Configuration

Configure XCP UDP slave connection
Library: Simulink Real-Time / XCP / UDP
Vehicle Network Toolbox / XCP Communication / UDP

XCP UDP
Configuration

Description

The XCP UDP Configuration block uses the parameters specified in the A2L file and the ASAP2
database to establish an XCP slave connection.

Before you acquire or stimulate data, specify the A2L file to use in your XCP UDP Configuration . Use
one XCP UDP Configuration to configure one slave connection for data acquisition or stimulation. If
you add XCP UDP Data Acquisition and XCP UDP Data Stimulation blocks, your model checks to see
if there is a corresponding XCP UDP Configuration block. If there is no corresponding XCP CAN
Configuration block, the model prompts to add one.

Other Supported Features

The XCP UDP communication blocks support Simulink accelerator mode and rapid accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information about
these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters

Config name — Specify XCP UDP session name
"UDP_Configl' (default)

Specify a unique name for your XCP session.
Programmatic Use

SlaveName

A2L File — Select an A2L file
file name

Click Browse to select an A2L file for your XCP session.
Programmatic Use

A2LFile

Enable seed/key security — Select that key required to establish connection
"off

Select this option if your slave requires a secure key to establish connection. Select a file that
contains the seed/key definition to enable the security.

XCP UDP Configuration

Programmatic Use

EnableSecurity

File (*.DLL) — Select file for seed and key security
file name

If you select Enable seed/key security, this field is enabled. Click Browse to select the file that
contains seed and key security algorithm that unlocks an XCP slave module. This parameter is
available on in Windows Desktop Simulation for Vehicle Network Toolbox.

Programmatic Use

SeedKeylLib

Output connection status — Display connection status
"off'

Select this option to display the status of the connection to the slave module. Selecting this option
adds a new output port.

Programmatic Use

EnableStatus

Disable CTR error detection — Disable CTR error detection scheme
‘on' (default) | 'off"

To detect missing packets, the block can check the counter value in each XCP packet header. When
‘on', counter error detection for packet headers is disabled. When 'off', the counter Error
detection scheme is enabled.

Programmatic Use

HeaderErrDet

Error detection scheme — Select CTR error detection scheme

One counter for all CTOs and DTOs (default) | Separate counters for
(RES,ERR,EV,SERV) and (DAQ) | Separate counters for (RES,ERR), (EV,SERV) and
(DAQ)

To detect missing packets, the block can check the counter value in each XCP packet header and
apply an error detection scheme.

Programmatic Use

CTRScheme

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: SampleTime

Local IP Address — Maser IP address
X.X.X. X

26-13

26 XxCP Blocks

Enter the IP address to which you want to connect.

Programmatic Use

LocalAddress

Local Port — Master IP port
1-65535

The combination of Local IP address and Local port must be unique.

Programmatic Use

LocalPort

See Also

Blocks
XCP UDP Data Acquisition | XCP UDP Data Stimulation

Introduced in R2019a

26-14

XCP UDP Data Acquisition

XCP UDP Data Acquisition

Acquire selected measurements from configured slave connection
Library: Simulink Real-Time / XCP / UDP

Vehicle Network Toolbox / XCP Communication / UDP 02 UoF, b

Description

The XCP UDP Data Acquisition block acquires data from the configured slave connection based on the
selected measurements. The block uses the XCP UDP transport layer to obtain raw data for the
selected measurements at the specified simulation time step. Configure your XCP connection and use
the XCP UDP Data Acquisition block to select your event and measurements for the configured slave
connection. The block displays the selected measurements as output ports.

Other Supported Features

The XCP communication blocks support the use of Simulink accelerator mode and rapid accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters

Config name — Specify XCP UDP session name
select from list

Select the name of XCP configuration you want to use. The list displays all available names specified
in the XCP UDP Configuration blocks in the model. Selecting a configuration displays events and
measurements available in the A2L file of this configuration .

Note You can acquire measurements for only one event by using an XCP UDP Data Acquisition block.
Use one block for each event whose measurements you want to acquire.

Programmatic Use

SlaveName

Event name — Select an event
select from list

Select an event from the available list of events. The XCP UDP Configuration block uses the specified
A2L file to populate the events list.

Programmatic Use

EventName

26-15

26 XxCP Blocks

26-16

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

: - :
want to use and click the add button, _| to add it to the selected measurements. Hold the Ctrl key
on your keyboard to select multiple measurements.

In the Block Parameters dialog box, type the name of the measurement you want to use in the
Search box. The All Measurements lists displays a list of all matching names. Click the x

[Triangle x

to clear your search.
Programmatic Use

AllMeasurements

Selected Measurements — List selected measurements
measurement names

This list displays selected measurements. To remove a measurement from this list, select the
measurement and click the remove button, il
2|

In the Block Parameters dialog box, use the toggle buttons £ to reorder the selected
measurements.

Programmatic Use

SelectedMeasurements

Force Datatypes and Allow Non-Scalar — Set the port data type according to the type
definition in the A2L file
'off' (default) | 'on'

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
When the parameter value is set to 'on"', the block:

» Sets the port data type according to the type definition in the A2L file
* Supports up to three-dimensional XCP measurements in Simulink

These ASAP2 data types are supported by corresponding Simulink port data types. SBYTE, UWORD,
SWORD, ULONG, SLONG , A UINT64, A INT64, FLOAT32 IEEE, and FLOAT64 TIEEE.

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. MATLAB default operation treats matrices as row-major. An XCP measurement can have
LAYOUT as COLUMN DIR or ROW DIR. If a matrix measurement is COLUMN DIR, the blocks
rearranges the measurement in memory and ensures that the matrix (row X, col Y) in MATLAB refers
to the same entry as (row X, col Y) on the ECU. The rearrangement causes matrix entries that are
contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

Programmatic Use

ForceDatatypes

XCP UDP Data Acquisition

DAQ List Priority — Specify a priority value for slave device driver
priority value

Specify a priority value as an integer from 0 to 255 for the slave device driver to prioritize
transmission of data packets. The slave can accumulate XCP packets for lower priority DAQ lists
before transmission to the master. A value of 255 has the highest priority. The SET DAQ LIST MODE
command communicates the DAQ List Priority value from master to slave. This communication
method differs from the specification of the Event Channel Priority property, which comes from the
A2L file.

Programmatic Use

DAQPriority

Sample time — Specify sampling time of block
0.01 (default)

Specify the sampling time of the block during simulation, which is the simulation time. This value
defines the frequency at which the XCP UDP Data Acquisition block runs during simulation. If the
block is inside a triggered subsystem or is to inherit sample time, you can specify -1 as your sample
time. You can also specify a MATLAB variable for sample time. The default value is 0.01 (in seconds).

Programmatic Use

SampleTime

Enable Timestamp — Enable reading timestamp from incoming DTO packets
off (default) | on

When the Timestamp is enabled, the block reads the timestamp from incoming DTO packets and

outputs the timestamp to Simulink. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Programmatic Use

EnableTimestamp

See Also

Blocks
XCP UDP Configuration | XCP UDP Data Stimulation

Introduced in R2019a

26-17

26 XxCP Blocks

26-18

XCP UDP Data Stimulation

Perform data stimulation on selected measurements
Library: Simulink Real-Time / XCP / UDP
Vehicle Network Toolbox / XCP Communication / UDP 3 XCP UDP

Data Stimulation

Description

The XCP UDP Data Stimulation block sends data to the selected slave connection for the selected
event measurements. The block uses the XCP UDP transport layer to output raw data for the selected
measurements at the specified stimulation time step. Configure your XCP session and use the XCP
UDP Data Stimulation block to select your event and measurements on the configured slave
connection. The block displays the selected measurements as input ports.

Other Supported Features

The XCP communication blocks support Simulink accelerator mode and rapid accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information about
these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters

Config name — Specify XCP UDP session name
select from list

Select the name of XCP configuration that you want to use. The list displays all available names
specified in the available XCP UDP Configuration blocks in the model. Selecting a configuration
displays events and measurements available in the A2L file of this configuration.

Note You can stimulate measurements for only one event by using an XCP UDP Data Stimulation
block. Use one block for each event whose measurements you want to stimulate.

Programmatic Use

SlaveName

Event name — Select an event
select from list

Select an event from the event list. The XCP UDP Configuration block uses the specified A2L file to
populate the events list.

Programmatic Use

EventName

XCP UDP Data Stimulation

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

, L3 .
want to use and click the add button, _| to move it to the selected measurements. Hold the Ctrl
key on your keyboard to select multiple measurements.

In the block parameters dialog box, type the name of the measurement you want to use. The All
Measurements lists displays a list of all matching names. Click the x

[Triangle x

to clear your search.
Programmatic Use

AllMeasurements

Selected Measurements — List selected measurements
measurement names

This list displays your selected measurements. To remove a measurement from this list, select the
measurement and click the remove button, il
2|

In the Block Parameters dialog box, use the toggle buttons £ to reorder the selected
measurements.

Programmatic Use

SelectedMeasurements

Force Datatypes and Allow Non-Scalar — Set the port data type according to the type
definition in the A2L file
'off' (default) | 'on'

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
When the parameter value is set to 'on"', the block:

» Sets the port data type according to the type definition in the A2L file

* Supports up to three-dimensional XCP measurements in Simulink

These ASAP2 data types are supported by corresponding Simulink port data types. SBYTE, UWORD,
SWORD, ULONG, SLONG , A UINT64, A INT64, FLOAT32 IEEE, and FLOAT64 TIEEE.

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. MATLAB default operation treats matrices as row-major. An XCP measurement can have
LAYOUT as COLUMN DIR or ROW DIR. If a matrix measurement is COLUMN DIR, the blocks
rearranges the measurement in memory and ensures that the matrix (row X, col Y) in MATLAB refers
to the same entry as (row X, col Y) on the ECU. The rearrangement causes matrix entries that are
contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

Programmatic Use

ForceDatatypes

26-19

26 XxCP Blocks

Enable Timestamp — Enable sending Simulink timestamp in STIM DTO packets
off (default) | on

When the Timestamp is enabled, the block inputs a timestamp from Simulink and sends the
timestamp in the STIM DTO packets. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Programmatic Use

EnableTimestamp

See Also

Blocks
XCP UDP Configuration | XCP UDP Data Acquisition

Introduced in R2019a

26-20

Speedgoat

21

Speedgoat Support

27 Speedgoat Support

Speedgoat Target Computers and Support

27-2

Speedgoat target computers are real-time computers fitted with a set of I/O hardware, Simulink
programmable FPGAs, and communication protocol support. Speedgoat target computers are
optimized for use with Simulink Real-Time and fully support the HDL Coder™ workflow.

Speedgoat real-time target machines include:
» Performance — Highest performance, cost-effective real-time system for office or lab. Supports up

to 50 I/O modules.

* Mobile — Compact, rugged, fanless, and expandable real-time system. For mobile and in-vehicle
use, and for use in confined areas. Provides extended operating temperature. Supports up to 14
[/O modules.

* Baseline — Small, rugged, and fanless real-time system. For mobile, in-vehicle, and classroom use,
and for use in confined areas. Special pricing for academia available. Provides extended operating
temperature. Supports up to 7 I/O modules

* Audio — Real-time system optimized for audio applications, such as hearing aids and car
acoustics.

When you install the Speedgoat block library, the installer sets up help for the blocks in the MATLAB
Help browser. To view the block library documentation, open the Help browser and navigate to the
home page. At the bottom right of the home page, under Supplemental Software, click Simulink
Real-Time - Speedgoat Library. The help opens in the current window.

To install your Speedgoat library, navigate on the Internet to www . speedgoat.com/login, the
Speedgoat Customer Portal. Follow the directions to download and install your library.

You can find Speedgoat real-time target machine configuration documentation online here:

www . speedgoat.com/help

You can find Speedgoat real-time target machine product information online here:

www . speedgoat.com/products

Speedgoat I/0 Hardware

Speedgoat provides a wide range of I/O hardware with ready-to-use configurations that include I/O
emulation products typically used with hardware-in-the-loop (HIL) simulations. Speedgoat I/O
connectivity includes support for:

* Analog I/O: A/D, D/A, single or differential, with or without isolation, 16-24 bit, both voltage and
current

» Digital I/O: LVCMOS, TTL, RS-422, RS-485, LVDS

* FPGA code modules for:

* Interrupts

* PWM generation and capture, pulse patterns

* Quadrature decoding and encoding (measurement and simulation)
+ SSI master, slave, and sniffer (measurement and simulation)

https://www.speedgoat.com/login
https://www.speedgoat.com/help
https://www.speedgoat.com/products

Speedgoat Target Computers and Support

* SSI2 master, slave, and sniffer (measurement and simulation)
* EnDat 2.2 decoder, encoder, and sniffer (measurement and simulation)
* BiSS decoder, encoder, and sniffer (measurement and simulation)
* SPI master, slave, and sniffer
* I?C master and slave
* Cam and crank decoder and simulator (measurement and simulation)
* UART (RS-485/RS-422)
* Aurora 64B/66B master and slave
* LVDT/RVDT and synchro/resolver (measurement and simulation)
* Serial:

* RS-232, RS-422, RS-485
+ SDLC, HDLC
* Shared memory
* Thermocouple, RTD, and strain gauge (measurement and simulation)
e Vibration measurements (IEPE/ICP transducers)
* Programmable resistors and potentiometers
» SPDT, SPST, and DPST reed relays

* Fault insertion

Speedgoat Communication Protocols

Speedgoat provides communication protocol support for I/O hardware with ready-to-use
configurations. Speedgoat communication protocols include:

» CAN, CAN FD, LIN, SAE J1939, and FlexRay™

* XCP over Ethernet, XCP over CAN

* MIL-STD-1553, ARINC-429, ARINC-629, AFDX (ARINC 664 Pt7)

» EtherCAT master and EtherCAT slave

* Real-time UDP, Real-time raw Ethernet, TCP/IP

* EtherNet/IP™ Scanner (master) and EtherNet/IP Adapter (slave)

* PROFINET master and PROFINET slave

* PROFIBUS, Modbus TCE, Modbus RTU, POWERLINK

* Timing and synchronization: PTP (Precision Time Protocol, IEEE 1588), GPS, IRIG
» UART (RS-232, RS-422, RS-485)

» 12C, SPI, SSI, SSI2, EnDAT 2.2, BiSS

* Camera Link and UVC-compliant USB video cameras (webcams)

* Aurora 64B/66B multigigabit links for FPGA

27-3

27 Speedgoat Support

See Also

More About
. “Set Up and Configure Simulink Real-Time”

External Websites

. www.speedgoat.com/help

. www.speedgoat.com/products
. www.speedgoat.com

27-4

https://www.speedgoat.com/help
https://www.speedgoat.com/products
https://www.speedgoat.com

UEI, Asynchronous Events

Asynchronous Events

28 Asynchronous Events

Asynchronous Event Support

28-2

In this section...

“Adding an Asynchronous Event” on page 28-2

“Asynchronous Interrupt Example” on page 28-3

Adding an Asynchronous Event

The Simulink Real-Time software includes support for asynchronous events in response to an
interrupt from I/O boards. In response to these interrupts, the CPU can suspend normal execution
and jump to another section of code called an Interrupt Service routine (ISR).

When developing an Simulink Real-Time model, you can model an Interrupt Server Routine (ISR) by
using a Function-Call Subsystem. Also, add an IRQ Source block connected to the Function-Call
Subsystem block. This subsystem is then executed when an interrupt occurs and the CPU is ready to
accept it.

After you install an I/O board with interrupt support into your target computer, you can add Simulink
Real-Time asynchronous blocks to your Simulink model.

1 Inthe MATLAB Command Window, type
slrtlib

The Simulink Real-Time Library opens.
2 Double-click the Asynchronous Event group block.

The Library: slrtlib/Asynchronous Event window opens.

3 Drag the Simulink Real-Time IRQ block into your Simulink model and connect the output to this
block to the input of a Function-Call Subsystem. For more information on Function-Call
subsystems, see the Simulink and Simulink Coder documentation.

IR Source:
Auto PCI

IRQ Source
r
functioni)
Nin Out1 fr

Function-Call
Subsystem

In the setup shown above, the CPU executes the contents of the Function Call-Subsystem
whenever IRQ 5 occurs.

4 Double-click the IRQ Source block.

The Block Parameters: IRQ Source dialog box opens.

5 To determine and use the IRQ that the BIOS assigned to the board, from the IRQ line number
list, select Auto (PCI only).

Asynchronous Event Support

Alternatively, select one of the values 3—15 for this number. To determine the available IRQ line
numbers on the target computer, use the function SimulinkRealTime.target.getPCIInfo.

From the I/O board generating the interrupt drop-down list, select an interrupt board.

7 Inthe PCI slot (-1: autosearch) or ISA base address field, enter the PCI slot number or enter
-1 to let the Simulink Real-Time software determine the number.

8 Click OK.
For more information about the IRQ Source block, see Async IRQ Source.

To transfer data from your ISR, add an Async Transition block or Async Read/Write block to your
Simulink model. See “Asynchronous Interrupt Example” on page 28-3.

If you are using a CAN field bus with interrupts, see “Asynchronous Interrupt Example” on page 28-
3.

Asynchronous Interrupt Example

The xpcasynctrans model uses an external TTL signal to trigger an interrupt on the parallel port.
Data is exchanged between an asynchronous task and a rate monotonic task by using an Async Rate
Transition block. For more information, see the annotations in the model that document its purpose.

If you installed the MATLAB software in the default location, the example model is located in this
folder:

C:\MATLAB\toolbox\rtw\targets\xpc\xpcdemos

28-3

Asynchronous Event: Blocks

This topic describes the Target Management library and Displays and Logging library blocks:

29 Asynchronous Event: Blocks

29-2

Async IRQ Source

Async IRQ Source block
Library: Simulink Real-Time / Asynchronous Event

IR Source: b
Auto PC|

Description

The IRQ Source block configures the Simulink and Simulink Real-Time software to treat a particular
Function-Call Subsystem as an Interrupt Service Routine (ISR). This block is actually a virtual block
and does not exist at model execution time. However, the model initialization code sets up the CPU to
execute the ISR when the specified interrupt occurs.

Parameters

IRQ line number — Interrupt line for block
Auto (PCI only) (default) | 3..15

Select Auto (PCI only) to enable the Simulink Real-Time software to automatically determine the
IRQ that the BIOS assigned to the board and use it.

Alternatively, select the IRQ line number you are using for this block. This depends on the
characteristics of your I/O module. You may need to query the PCI bus in the target computer to find
what IRQ the PCI bus assigned to your I/O module. Use the function
SimulinkRealTime.target.getPCIInfo.

Valid IRQ numbers are between 3 and 15.

Programmatic Use
Block Parameter: irq

I/0 board generating the interrupt — Device ID of board
select from list

For many I/O boards, you need to set up the board to generate the interrupt. You might also need to
set up board specific features at the beginning and/or end of an ISR. Select the board you intend to
use from the drop-down list.

Programmatic Use
Block Parameter: devid

PCI slot (-1: autosearch) or ISA base address — PCI bus and slot
-1 (default) | [BusNumber,SlotNumber]

If PCI:

If only one board of this type is in the target computer, enter -1 to automatically locate the board.

Async IRQ Source

If two or more boards of this type are in the target computer, enter the bus number and the PCI slot
number of the board associated with this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type:

tg = slrt;
getPCIInfo(tg, 'installed')

If ISA, enter the base address.

Programmatic Use
Block Parameter: slot

See Also

Topics
“Asynchronous Event Support” on page 28-2

Introduced before R2006a

29-3

Logitech

Logitech Blocks

The Simulink Real-Time Logitech blocks support Logitech G29 Steering Wheel functions.

30 Logitech Blocks

30-2

Logitech G29 Steering Wheel

Receive Logitech G29 Steering Wheel Read data
Library: Simulink Real-Time / Logitech G29

Buttons
Steering

Logitach G20 Steering Wheel Padals

Description

The Logitech G29 Steering Wheel block reads data from a Logitech G29 Steering Wheel (PS3 only).
The block does not support a Stick Shift module.

Ports
Output

Buttons — status of steering wheel buttons
0 (= unpressed) | 1 (= pressed)

The Buttons output is a vector of boolean values that indicate the status of buttons on the steering
wheel. The order of the button values in the vector is:
Square

X

Circle

Triangle

LPaddle

RPaddle

L2

R2

L3

R3

Share

Option

13 PS

© 0O N O Ul A W N M=

= o e
N = ©

Data Types: Boolean

Steering — value of steering wheel position
0 (= left most) | 65535 (= right most)

The Steering output value indicates the position of the steering wheel.

Data Types: uint16

Pedals — status of throttle, brake, and clutch pedals
0 (= not engaged) | 255 (= fully engaged)

Logitech G29 Steering Wheel

The Pedals output is a vector of values that indicate the status of the throttle, brake, and clutch
pedals. The order of the pedal values in the vector is:

1 Throttle
2 Brake
3 Clutch

Data Types: uint8

Direction — status of direction pad buttons on steering wheel
0 (=UP) | 2 (= RIGHT) | 4 (= DOWN) | 6 (= LEFT) | 8 (= UNPRESSED)

The Direction output value indicates a button press on the direction pad. Intermediate values occur
when the direction pad is pressed in between the pad buttons.

Data Types: uint8

Status — status of communications with steering wheel
0 (default) | negative value

The Status output value indicates successful communications with the steering wheel (0) or
unsuccessful communications (negative value).

Data Types: uint32
Parameters

sampleTime — select sample time for steering wheel data
-1 (inherited) (default)

The sampleTime selects the sample time for steering wheel data in milliseconds. The minimum
sampleTime for block is 1ms. The recommended sampleTime is 2ms.

Programmatic Use
Block Parameter: sampleTime

See Also

External Websites
Logitech G29 Driving Force Racing Wheel

Introduced in R2018b

30-3

https://www.logitechg.com

Utility Drivers, Target Management,
Displays and Logging

Utility Blocks

The Simulink Real-Time utility blocks support utility functions. Some of these blocks exist in the
Utilities library, available at the top level of the Simulink Real-Time Block Library. Others are
available as sublibraries of the I/O function they support.

31 utility Blocks

31-2

Bit Packing

Construct data frames
Library: Simulink Real-Time / Utilities

Description

This block constructs data frames. Its output port is typically connected to an input port of a Send
block or Digital Output block. The block has one output port. This port can be a vector of arbitrary
size; it represents the data frame entity constructed by the signals entering the block at its input
ports. The number of input ports depends on the setting in the block dialog box.

Parameters

Bit Patterns — Packed data bit pattern
{[0:31]} (default)

Specify bit patterns. The data type entered in the control must be a MATLAB cell array vector. The
number of elements in the cell array define the number of input ports shown by this block instance.
The cell array elements must be of type double array and define the position of each bit of the
incoming value (data typed input port) in the outgoing double value (data frame). From a data type
perspective (input ports), the block behaves like a Simulink Sink block, and therefore the data types
of the input ports are inherited from the driving blocks.

Programmatic Use
Block Parameter: BitPatterns

Output port (packed) data type — Packed data type
uint32 (default) | double | single | int8 | uint8 | int16 | uintl6 | int32 | boolean

From the list, select an output port (packed) data type.

Programmatic Use
Block Parameter: PackDataType

Output port (packed) dimensions — Packed data dimensions
[1] (default)

Specify the dimensions the output port (packed). Enter this as a vector. Specify the size of the port
using a format compatible with the MATLAB size command.

Programmatic Use
Block Parameter: PackDataSize

See Also
Bit Unpacking

Bit Packing

Introduced in R2006a

31-3

31 utility Blocks

31-4

Bit Unpacking

Deconstruct data frames
Library: Simulink Real-Time / Utilities

Description

This block is used to extract data frames. Its input port is typically connected to an output port of a
Receive block or Digital Input block.

The block has one input port, which represents the data frame entity from which the signals are
extracted and leaving the block at its output ports. The number of output ports and the data type of
each output port depend on the settings in the block dialog box.

Bit Unpack Four Bytes
This example show how to configure a Bit Upacking block to:

* Receive a 32-bit word as input by using input port data type uint32.
* Unpack four 8-bit words (bytes) from the input data by using a bit pattern.
* Send four 8-bit words as output by using the output data type uint8.

Bit Unpacking

Block Parameters: Bit Unpacking

xpcbitpacking (mask) (link)
Bit-Unpacking

Farameters

Bit patterns:

|{[0:7] [8:15] [16:23] [24:31]}

Input port (packed) data type: uint32 -
Input port (packed) dimensions:

1] [
Output port (unpacked) data types (cell array):

| {'uint8' 'uint8’ 'uints’ 'uint8"} I

Output port (unpacked) dimensions (cell array):
{011 (1] (1] 113 I
Sign extend

Cancel Help Apply

After configuring the block parameters, the Bit Upacking block appears as shown.

#FI:?

y 12;5}
243
Parameters

Bit Patterns — Select bit pattern
{[0:31]} (default)

Specify bit patterns. The data type must be a MATLAB cell array vector. The number of elements in
the cell array define the number of input ports shown by this block instance. The cell array elements
must be of type double array and define the position of each bit of the incoming value (data typed
input port) in the outgoing double value (data frame). From a data type perspective, the block
behaves like a Sink block. The Input port (packed) data types specify the data type of the input
port.

Programmatic Use
Block Parameter: BitPatterns

Input port (packed) data types — Packed data type
uint32 (default) | double | single | int8 | uint8 | intl6 | uintl6 | int32 | boolean

31-5

31 utility Blocks

31-6

From the list, select an input port (packed) data type.

Programmatic Use
Block Parameter: PackDataType

Input port (packed) dimension — Packed data dimension
[1] (default)

Specify the dimensions of the input port (packed). Enter this as a vector. Specify the size of the port
using a format compatible with the MATLAB size command.

Programmatic Use
Block Parameter: PackDataSize

Output port (unpacked) data types (cell array) — Unpacked data type
{'uint32'} (default)

The output ports (packed) can be of arbitrary data type. The number of elements in the cell array
define the number of output ports shown by this block instance. The data types are:

* double
* single
*+ int8

* uint8

« intl6

* uintlé
¢ int32

e uint32
* boolean

Programmatic Use
Block Parameter: UnpackDataTypes

Output port (unpacked) dimension (cell array) — Unpacked data dimension
{[11} (default)

Specify the dimensions of each output port (unpacked). Enter this as a cell array of vector sizes.

Programmatic Use
Block Parameter: UnpackDataSizes

Sign extend — Enable sign extension
on (default) | of f

Select this check box to enable sign extension. If you select this check box and unpack the data frame
into a signed type (int8, int16, or int32), the block performs sign extension. For example, if the bit
pattern is [0:4], and the data type is int8, you are extracting 5 bits into an 8-bit wide signed type.
In this case, bits 5, 6, and 7 are the same as bit 4, resulting in sign extension. This functionality
enables you to pack and unpack negative numbers without losing precision.

Programmatic Use
Block Parameter: SignExtend

Bit Unpacking

See Also
Bit Packing

Introduced in R2006a

31-7

31 utility Blocks

31-8

Byte Packing

Construct data frames
Library: Simulink Real-Time / Utilities

) Pack B

Description

The Byte Packing block converts one or more signals of user-selectable data types to a single vector
of varying data types. The output of this block typically connects to an input port of a Send block.

Note The Byte Packing block and Byte Unpacking block support the slrt.tlc code generation

target and generate code that runs on Speedgoat target machines. Due to considerations such as
endianness and addressable word size, these blocks can generate incorrect results for other code
generation targets or target computers.

For example, suppose that you are packing three signals into a vector of uint8. The signals have the
following attributes:

Dimension Size Type
Scalar 1 single
Vector 3 uint8
Vector 3 uint8

1 Set the packed output port data type to uint8.
2 Set the input port data type to a cell array encoding the data types:

{'single', ['uint8'], ['uint8']}
Use square brackets to represent vectors.

Set the byte alignment value to 1.
4 Connect the signals to the Byte Packing block.

Input/Output Ports
Input

Port_1 — First of N input ports
scalar | vector

The block has from 1 to N input ports. Specify the number of input ports and their types by entering
them as a cell array in the parameter Input port (unpacked) data types (cell array).

Data Types: single | double | int8 | intl6 | int32 | uint8 | uint1l6 | uint32 | Boolean

Byte Packing

Output

Port_1 — Output port containing packed data
vector

The block displays one output port that transmits a vector of packed data. You determine the data
type of the packed data by setting Output port (packed) data type.
Data Types: single | double | int8 | uint8 | int1l6 | uint16 | int32 | uint32 | Boolean

Parameters

Output port (packed) data type — Data type for the packed output signal
uint8 (default) | double | single | int8 | intl6 | uintl6 | int32 | uint32 | boolean

From the list, select a data type for the output port.

Programmatic Use
Block Parameter: MaskPackedDataType

Input port (unpacked) data types (cell array) — Data types for the unpacked input
signals
{'uint8'} (default) | double | single | int8 | int16 | uint16 | int32 | uint32 | boolean

Specify as a cell array the data types of the input ports (unpacked) for the different input signals. The
number of elements in the cell array determines the number of input ports shown by this block
instance. To represent vector elements, use square brackets in the cell array.

Programmatic Use
Block Parameter: MaskUnpackedDataTypes

Byte Alignment — Alignment of the input signal data types after packing
1 (default) | 2|48

Each element in the input signals list starts at a multiple of the alignment value, specified from the
start of the vector. If the alignment value is larger than the size of the data type in bytes, the block
fills the space with pad bytes of value 0.

For example, if the alignment value is 4:

* uint32 receives no padding

* uint16 receives 2 bytes of padding

* uint8 receives 3 bytes of padding

If the model accesses the data items frequently, consider selecting an alignment value equal to the

largest data type that you want to access. If the model transfers data items frequently as a group,
consider an alignment value of 1, which packs the data into as small a space as possible.

Programmatic Use
Block Parameter: MaskAlignment

See Also
Byte Unpacking

31-9

31 utility Blocks

Introduced in R2006a

31-10

Byte Reversal/Change Endianess

Byte Reversal/Change Endianess

Reverse little-endian data for big-endian processor

Library: Simulink Real-Time / Utilities
X i P
X Endanees P
Description

You use the Byte Reversal/Change Endianess block for communication between a Simulink Real-Time
system and a system running with a processor that is big-endian. Processors compatible with the
Intel 80x86 family are little-endian. For this situation, insert a Byte Reversal/Change Endianess block
before the Pack block and another just after the Unpack block. The following is the Change Endianess
block.

Parameters
Block Parameters for Change Endianess

Number of input ports — Number of ports
1 (default)

The number of input ports adjusts automatically to follow this parameter, and the number of outputs
is equal to the number of inputs.

Programmatic Use
Block Parameter: numInp

Machine word length — Word length for conversion
Byte (default) | Word | Double Word

Select a machine word length from the list to which to convert the data.

Programmatic Use
Block Parameter: />

Byte Reversal Block Parameters

Number of inputs — Number of ports
1 (default)

The number of input ports adjusts automatically to follow this parameter, and the number of outputs
is equal to the number of inputs.

31-11

31 utility Blocks

31-12

Programmatic Use
Block Parameter: numInp

See Also

Introduced in R2006a

Byte Unpacking

Byte Unpacking

Deconstruct data frames
Library: Simulink Real-Time / Utilities

h Unpack >

Description

This block converts a vector of varying data types into one or more signals of user-selectable data
types. The input of this block typically connects to an output port of a Receive block.

Note The Byte Packing block and Byte Unpacking block support the slrt.tlc code generation

target and generate code that runs on Speedgoat target machines. Due to considerations such as
endianness and addressable word size, these blocks can generate incorrect results for other code
generation targets or target computers.

For example, suppose that you are unpacking a uint8 vector signal into three signals. The signals
have the following attributes:

Dimension Size Type
Scalar 1 single
Vector 3 uint8
Vector 3 uint8

1 Set the output port data type to:
{'single', ['uint8'], ['uint8']}
Use square brackets to represent vectors.

2 Set the output port dimension to:

{I11,[31,[31}
3 Set the alignment value to 1.
Connect the output signals to the Byte Unpacking block.

Input/Output Ports
Input

Port_1 — Input port containing packed data
vector

The block displays one input port that receives a vector of packed data. The source of the packed
data determines by inheritance the data type of the packed data.

Data Types: single | double | int8 | uint8 | int1l6 | uintl6 | int32 | uint32 | Boolean

31-13

31 utility Blocks

31-14

Output

Port_1 — First of N output ports
scalar | vector

The block displays from 1 to N output ports, as specified by elements of the cell array in the
parameter Output port (unpacked) data types (cell array).
Data Types: single | double | int8 | intl6 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters

Output port (unpacked) data types (cell array) — Data types for the unpacked
output signals
uint8 (default) | double | single | int8 | int1l6 | uintl6 | int32 | uint32 | boolean

Specify as a cell array the data types of the output ports (unpacked) for the different output signals.
The number of elements in the cell array determines the number of output ports shown by this block
instance. To represent vector elements, use square brackets in the cell array.

Programmatic Use
Block Parameter: MaskUnpackedDataTypes

Output port (unpacked) dimensions (cell array) — Dimensions of each output port
(unpacked)
{[1]} (default) | {[N], [M], ...}

Specify the dimensions of the output ports as a cell array of vectors.

Programmatic Use
Block Parameter: MaskUnpackedDataSizes

Byte Alignment — Alignment of the output signal data types before unpacking
1 (default) |2 |4 |8

Each element in the output signals list starts at a multiple of the alignment value, specified from the
start of the input vector. If the alignment value is larger than the size of the data type in bytes, the
vector contains pad bytes of value 0.

For example, if the alignment value is 4:

* uint32 receives no padding
* uint16 receives 2 bytes of padding
* uint8 receives 3 bytes of padding

Programmatic Use
Block Parameter: MaskAlignment

See Also
Byte Packing

Introduced in R2006a

Shared Memory Pack

Shared Memory Pack

Shared memory pack
Library: Simulink Real-Time / Shared Memory

N el b
Description

This block packs the specified partition structure into an unstructured double word array vector. It
converts one or more Simulink signals of varying data types into the vector. Typically, the input to a
pack block is the output from a write block. The Simulink interface is not aware of structures; pass
the output of each structure segment as input to the Shared Memory Pack block.

Memory partitions consist of groups of Simulink signals, which are combined into blocks (packets) of
32-bit words. Before you begin to configure this block, be sure that you have a predefined shared
memory partition structure as required by the shared memory manufacturer.

This block ignores the Address field of the partition structure.

Parameters

Partition struct — Name of structure
[] (default)

Enter the name of the predefined shared memory partition structure.

Programmatic Use
Block Parameter: partition

See Also
Shared Memory Unpack

Introduced in R2006a

31-15

31 utility Blocks

Shared Memory Unpack

Shared memory unpacking
Library: Simulink Real-Time / Shared Memory

} unpack
Bytes = 4

el

Description

This block unpacks an unstructured double word array vector (from the Shared Memory Pack block)
into the specified partition structure.

Before you begin to configure this block, be sure that you have a predefined shared memory partition
structure as required by the shared memory manufacturer.

This block ignores the Address field of the partition structure.

Parameters

Partition struct — Name of structure
[] (default)

Enter the name of the predefined shared memory partition structure. The block unpacks the double
word array vector into this structure.

Programmatic Use
Block Parameter: partition

See Also
Shared Memory Pack

Introduced in R2006a

31-16

Target Management, Display, and
Logging Blocks

32 Target Management, Display, and Logging Blocks

32-2

CPU Temperature

Return current CPU temperature in Celsius
Library: Simulink Real-Time / Target Management / Target
Information

Temperature °C [

Description
This block outputs the CPU temperature. You can monitor this value and halt real-time execution

when the temperature reaches a value that depends on the temperature range of the target
computer.

Ports
Output

Port_1 — CPU temperature
scalar

Outputs the CPU temperature in Celsius with granularity of 1 °C.
Data Types: double

Parameters

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: SampleTime

See Also

Introduced in R2017a

Current Available Stack Size

Current Available Stack Size

Current Available Stack Size returns free stack available
Library: Simulink Real-Time / Target Management / Execution
Parameters

Description

Get Current
Free Stack Size

This block outputs the number of bytes of stack memory currently available to the real-time

application thread.

Parameters

Sample Time — Sample time of block
-1 (default)

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is

inherited.

Programmatic Use
Block Parameter: ts

See Also
Minimum Available Stack Size

Introduced in R2014a

32-3

32 Target Management, Display, and Logging Blocks

32-4

Elapsed Time

Read target computer time
Library: Simulink Real-Time / Target Management / Target
Information

MO Elapsedtima T

Description

The Elapsed Time block outputs in an internal format the elapsed time since the last restart of the
target computer.

To compute the difference in nanoseconds between two vector time values, pass both time values to
the Time Stamp Delta block. To convert a single time value to nanoseconds, pass one time value to a
Time Stamp Delta block and ground the other input.

Ports
Input

D — Sort block order
scalar

Dynamically typed, for use in establishing the block execution order. The block does not use the port
value.

Data Types: double
Output

T — Target computer time
[00000000 FFFFFFFF]

The time value is in an internal format. To convert it to nanoseconds, use the Time Stamp Delta block.
Data Types: [uint32 uint32]

Parameters

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: ts

See Also
Time Stamp Delta

Elapsed Time

Introduced in R2017b

32-5

32 Target Management, Display, and Logging Blocks

32-6

Enable Profiler

Start and stop profiler on target computer
Library: Simulink Real-Time / Displays and Logging

) Start
Start/Stop profiler
) Stop

Description

A rising edge on Start starts the profiler. A rising edge on Stop stops the profiler. A rising edge on
both ports does nothing.

Ports
Input

Start — Starts the profiler
0]1

When the Start input changes from 0 to 1, the block starts the profiler.

The profiler starts collecting data after the resources required to collect the data become available in
the background. Profiler preparation can span several time steps.

Data Types: Boolean

Stop — Stops the profiler
0]1

When the Stop input changes from 0 to 1, the block stops the profiler.

If the profiler is still running when the application stops, the profiler stops by itself. You do not have
to trigger the Stop input.

The amount of data collected is limited to 1GB. The profiler stops by itself when it reaches this limit.

Data Types: Boolean

See Also
Profiler Data|getProfilerData | resetProfiler |startProfiler | stopProfiler

Introduced in R2017b

From File

From File

Read data from file on target computer
Library: Simulink Real-Time / Target Management

Real-Time

From file data p

Description

The From File block reads data from a file on the target computer hard disk and outputs that data in
chunks every sample time. As the Simulink Real-Time kernel on the target computer reads the file
data, it writes that data into a software buffer whose size is user-defined. The From File block then
reads the data from this buffer and propagates it to the block outputs for use by the real-time
application. For example, use the From File block to drive a model with externally acquired data (data
from a file).

The From File block distributes the data as a sequence of bytes. To use these data bytes as input to a
model, convert the data into one or more signals. To do so, use the Byte Unpacking block. This block
outputs data in various Simulink data types. For example, assume that data in your file represents a
single precision scalar and a double precision vector of width 3. To convert data of this type, set up
the block to output every sample time:

28 bytes (1 * sizeof('single') + 3 * sizeof('double'))
File Format

Before you use a target computer file as the source for the From File block, format the data in the
file. The file format is a concatenation of the different data elements for one time step, followed by
the next time step, and so on.

For example, assume that your file contains the data from the preceding example. Assign a variable to
each component, for example,

* a — single precision value
* b — double precision vector of 3

Assume, also, that there are N time steps worth of data. The array dimension for a and b are then

« size(a) —[1, N]
« size(b) — [3, NI

In sequence, write out the data like the following to create the file.

a(l, 1) 4 bytes
b(:, 1) 24 bytes
a(l, 2) 4 bytes
b(:, 2) 24 bytes
a(l, N) 4 bytes
b(:, N) 24 bytes

32-7

32 Target Management, Display, and Logging Blocks

32-8

If you already have the data as MATLAB variables, use the
SimulinkRealTime.utils.bytes2file function to create the file on the development computer.
This function has the following syntax:

SimulinkRealTime.utils.bytes2file(filename, varl, ... varn)
where

+ filename — Specify the name of the data file from which the From File block distributes data
* varl, ... varn — Specify the column of data to be output to the model.

You can then use SimulinkRealTime. copyFileToTarget to download the file to the target
computer.

Parameters

Filename — Target computer file name
"' (default)

Enter the name of the target computer file that contains the data.

Programmatic Use
Block Parameter: filename

Output port width — Port size in bytes

8 (default)

Enter the size, in bytes, of the data to be distributed each sample time.
Programmatic Use

Block Parameter: dataSize

Buffer size — FIFO size in bytes
2000 (default)

Enter the size of the software FIFO, in bytes. The Simulink Real-Time kernel fills this FIFO with the
data to be input to the model. The From File block empties this FIFO as it inputs the data to the
model.

This parameter should ideally be

* Much larger than Output port width

* At least several time the disk read size
Increasing this parameter value helps prevent the real-time application from emptying the buffer
faster than the background task can fill it. This can happen if you have multitasking models or

conditionally executed subsystems, which can cause temporary increases in task execution time
and leave less time for the background task to fill the buffer.

Programmatic Use
Block Parameter: bufSize

Disk read size — Read size in bytes
512 (default)

Enter the number of bytes to read to fill the buffer.

From File

To understand this parameter, assume the following default values:

* Buffer size is 2000
* Disk read size is 512
* Output port width is 8

This means that the data buffer is of size 2000.

This buffer is initially full. Each time the block executes, eight bytes are output to the model, and the
number of bytes in the buffer decreases by eight. Each time the number of free bytes in the buffer
goes to 512 or higher, the Simulink Real-Time kernel attempts to read 512 bytes from the Simulink
Real-Time data file to fill the buffer.

Setting this parameter to another value, for example 1024, causes the From File block to wait until
1024 bytes are free before attempting the next read.

For efficiency, set this value to a multiple of 512 (a disk sector is 512 bytes).

Programmatic Use
Block Parameter: readSize

When reaching EOF — Behavior on EOF
Seek to beginning (default) | Hold last output

Select the behavior of the block for when you run the real-time application beyond when you have
data in the file. Select

* Hold last output — Stops reading and stops the output at the last value

* Seek to beginning — Returns to the beginning of the file and starts reading the data (this
option results in periodic data)

Programmatic Use
Block Parameter: EOFOption

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (- 1 means sample time is
inherited).

Programmatic Use
Block Parameter: sampTime

Show IsValid port — Show valid port indicator
off (default) | on

Select the Show IsValid port check box to make the port IsValid visible in the model. Port IsValid
outputs 1 if the file read succeeds and 0 if it fails.

Programmatic Use
Block Parameter: show2ports

See Also
Byte Unpacking

32-9

32 Target Management, Display, and Logging Blocks

Topics
“File Format” on page 32-7

Introduced before R2006a

32-10

From Target

From Target

Read data from target computer
Library: Simulink Real-Time / Displays and Logging

block [

Description
This block behaves like a source. Its output is connected to the input of a display device.

You can use the function SimulinkRealTime.utils.createInstrumentationModel to create an
instrumentation model using the From Target and To Target blocks.

The From Target block runs as a non-real-time Simulink block on the development computer. It is
asynchronous to the real-time application running on the target computer. If the real-time application
has a sample time slower than the non-real-time model, the From Target block can query the target
computer more than once. The target computer returns the same value in this case. Conversely, it is
possible for the From Target block to miss some sample times between two successively returned
values.

Note The use of From Target blocks requires a connection between the development and target
computers. Without a connection, operations such as opening a model or copying these blocks take
longer than normal.

Some notes on the From Target block behavior:

* To highlight a signal line that a From Target block refers to, double-click the From Target block.

» If the From Target block has not yet been configured, double-clicking the From Target block does
nothing.

* To edit the From Target block parameters, right-click the block and select Mask Parameters.

Parameters

Target application name — Name of real-time application
"' (default)

The function SimulinkRealTime.utils.createInstrumentationModel automatically enters a
name entry for this parameter. It is the same name as the Simulink model that the Simulink Real-Time
software uses to build the real-time application.

Programmatic Use
Block Parameter: appname

Signal name (block name) — Name of block
block (default)

32-11

32 Target Management, Display, and Logging Blocks

32-12

The function SimulinkRealTime.utils.createInstrumentationModel automatically enters a
name entry for this parameter. For multiple blocks, the function creates a From Target block for each
block. Using this method of specifying signals returns signal values one per time step.

You can also manually enter a cell array of signals for this parameter. Using this method of specifying
signals returns the values of a vector of signals (up to 1000) as fast as it can acquire them. The signal
values may not be at the same time step and the signal values are more likely to be spaced closely
together.

Programmatic Use
Block Parameter: blockpath

Observer sample time — Sample time of block
1 (default)

The function SimulinkRealTime.utils.createInstrumentationModel automatically enters
the sample time for the Simulink block with this signal. It can be equal to the model base sample time
or a multiple of the base sample time.

Programmatic Use
Block Parameter: ts

Use default target PC — Download to default target computer
on (default) | of f

Selecting this option directs Simulink Coder to build and download the real-time application to the
default target computer. This assumes that you configured a default target computer through the
Simulink Real-Time Explorer (see “PCI Bus Ethernet Setup” if you have not). By default, this check
box is selected.

Programmatic Use
Block Parameter: isdefault

Specify target name — Target computer name
not set (default)

If you deselect the Use default target PC check box, this field is displayed. Enter the name of the
configured target computer.

Programmatic Use
Block Parameter: targetname

See Also

Topics
“PCI Bus Ethernet Setup”

Introduced in R2014a

Get Overload Counter

Get Overioad Counter

Get Overload Counter returns number of CPU overloads
Library: Simulink Real-Time / Target Management / Execution
Parameters Gt

Owerload Counter

~

Description

This block returns the CPU overload count. To display the value, connect the block output to a real-
time Scope block. To achieve your required refresh rate, adjust the Simulink Real-Time Scope block
parameter Number of samples to a small number, such as 10.

For multirate models in multitasking mode, Get Overload Counter returns the number of overloads of
the base rate task.

Parameters

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: ts

See Also
Set Overload Counter

Topics
“CPU Overload Options”

Introduced in R2014a

32-13

32 Target Management, Display, and Logging Blocks

32-14

Minimum Available Stack Size

Get the smallest amount of free stack available
Library: Simulink Real-Time / Target Management / Execution
Parameters Gat Minimal

Free Stack Size

Description

This block outputs the number of bytes that have not been used in the stack since the thread was
created.

Note Because it checks the entire stack, this block executes slowly and is not intended for real-time
operation. Use this block only for diagnostic purposes. To check how much stack remains unused,
slow model execution until it runs with the block. Then, comment out the block to run the model at
full speed.

Parameters

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (- 1 means sample time is
inherited).

Programmatic Use
Block Parameter: ts

See Also
Current Available Stack Size

Topics
“Configure Generated Code with TLC” (Simulink Coder)

Introduced in R2014a

Scope

Scope
Real-time Scope block
Library: Simulink Real-Time / Displays and Logging
) Targré.E:lcnpe
Description

The real-time Scope block acquires data in chunks of size Number of samples from the real-time
application that is executing on the target computer.

You can configure real-time scope blocks for three types: Target, Host, and File. The target scope
displays data on the target computer screen. The host scope transmits data to the development
computer for processing and display. The file scope writes data to a file on the target computer.

The block dialog box changes depending on the setting for parameter Scope type. By default, the
block dialog box displays the parameters for Target scopes.

In some situations, an output signal of a block is not observable by the Scope block. You can make the
signal observable by adding test points, by adding unit Gain blocks, or by turning off the Signal
storage reuse or Block reduction configuration parameters. For more information, see
“Troubleshoot Signals Not Accessible by Name”.

The real-time application can generate data faster than the kernel can process it. Previous data can

be overwritten, causing gaps. If gaps occur in the data, consider increasing the value of the
Decimation property of the scope.

Ports
Input

Signal — Input signal that scope displays
numeric

Time-varying numeric value, which can be of any type that Simulink Real-Time supports.

Trigger signal — Trigger signal to scope
numeric

Time-varying numeric value, which can be of any type that Simulink Real-Time supports.

Dependency

This input becomes visible when you set Trigger mode to Signal triggering and set the Add
signal port to connect a signal trigger source parameter.

32-15

32 Target Management, Display, and Logging Blocks

32-16

Parameters

* “Common and Host Scope Parameters” on page 32-16
* “Target Scope Parameters” on page 32-19
* “File Scope Parameters” on page 32-20

Common and Host Scope Parameters
Host scopes require only the common scope parameters.

Scope number — Unique number identifying scope
1 (default) | numerical

Contains a unique number to identify the scope that is displayed. This number is incremented each
time you add a Simulink Real-Time Scope block.

This number identifies the Simulink Real-Time Scope block and the scope display on the development
or target computer.

Programmatic Use
Block Parameter: scopeno

Scope type — Location of scope output
Target (default) | Host | File
* Target — Output appears on the target computer screen

* Host — Output goes to the development computer. Usually, you display it with a host scope
display in Simulink Real-Time Explorer.

* File — Output goes to a file on the target computer. You can download the file to the
development computer for display or post processing.

Programmatic Use
Block Parameter: scopetype

Start scope when application starts — Starts scope with real-time application
‘on' (default) | 'off"

Select this check box to start a scope when you download and start the real-time application. After it
starts, the scope waits for a trigger. With a target scope, the scope window opens automatically. With
a host scope, you can open a host scope viewer window from Simulink Real-Time Explorer.

Programmatic Use
Block Parameter: autostart

Number of samples — Number of values per data package
250 (default) | integer

Enter the number of values to be acquired in a data package. The minimum number is 3 samples.

Programmatic Use
Block Parameter: nosamples

Number of pre/post samples — Number of samples to save or skip
0 (default) | integer

Scope

Specify a value less than 0 to save this number of samples before a trigger event. Specify a value
greater than 0 to skip this number of samples after the trigger event before data acquisition begins.

Programmatic Use
Block Parameter: noprepostsamples

Decimation — Sample time interval at which to collect data
1 (default) | unsigned integer

Enter a value to collect data at each sample time (1) or to collect data at less than every sample time
(2 or greater).

Programmatic Use
Block Parameter: interleave

Trigger mode — Define trigger event
FreeRun (default) | Software triggering|Signal triggering | Scope triggering

When a real-time scope is triggered, it acquires up to Number of samples of data from the real-time

application that is executing on the target computer.

* FreeRun — The scope acquires data continuously without waiting for a trigger.

+ Software triggering — The scope triggers in response to a user action, such as clicking the
Trigger button (§) in Simulink Real-Time Explorer.

* Signal triggering — The scope triggers in response to a signal level crossing.

* In the Trigger signal box, enter the index of a signal previously added to the scope.

(Alternatively) Click the Add signal port to connect a signal trigger source check box,
then connect an arbitrary trigger signal to the port Trigger signal. If the Add signal port to
connect a signal trigger source check box is selected, parameter Trigger signal does not

apply.
* In the Trigger level box, enter a value for the signal to cross before triggering.
* From the Trigger slope list, select one of Either, Rising, or Falling.
* Scope triggering — The scope triggers in response to the triggering of another scope.
* In the Trigger scope number box, enter the scope number of a Scope block. If you use this
trigger mode, you must also add a second Scope block to your Simulink model.

+ Ifyou want the scope to trigger on a specific sample of the other scope, enter a value in the
text box Sample to trigger on (-1 for end of acquisition). The default value of 0 indicates
that the triggering scope starts at the same time as the triggered (current) scope.

* Signal triggering — The scope block adds the Trigger signal, Add signal port to connect
signal trigger source, Trigger level, and Trigger slope parameters.

* Scope triggering — The scope block adds the Trigger scope number and Sample to trigger
on (-1 for end of acquisition) parameters.

Programmatic Use
Block Parameter: triggermode

Trigger signal — Index of signal on which to trigger scope
1 (default) | integer

32-17

32 Target Management, Display, and Logging Blocks

Enter the signal index. To find the index number for a signal, in the Command Window, type:

tg.ShowSignals = 'on'

This parameter does not apply if the Add signal port to connect a signal trigger source check
box is selected.

This parameter becomes visible when you set Trigger mode to Signal triggering.

Programmatic Use
Block Parameter: triggersignal

Add signal port to connect a signal trigger source — Adds trigger signal port
"off"' (default) | 'on'

Adds a port to the block to which you can connect a trigger signal. If you do not select this parameter,
the Signal port is the trigger port.

This parameter becomes visible when you set Trigger mode to Signal triggering.

When you select the Add signal port to connect a signal trigger source parameter, input
Trigger signal becomes visible.

Programmatic Use
Block Parameter: trigsignalfromport

Trigger level — Value that triggers scope
0.0 (default) | numerical

The scope triggers when the value on the trigger signal passes through value Trigger level in the
direction given by Trigger slope.

Dependency

This parameter becomes visible when you set Trigger mode to Signal triggering.

Programmatic Use
Block Parameter: triggerlevel

Trigger slope — Direction of value change that triggers scope
Either (default) | Rising | Falling

The scope triggers when the value on the trigger signal passes through value Trigger level in the
direction given by Trigger slope.

This parameter becomes visible when you set Trigger mode to Signal triggering.

Programmatic Use
Block Parameter: triggerslope

Trigger scope number — ID number of scope on which to trigger
integer

Enter the scope ID. To find the ID number for a scope, double-click the scope block or, in the
Command Window, type:

32-18

Scope

tg.Scopes

This parameter becomes visible when you set Trigger mode to Scope triggering.

Programmatic Use
Block Parameter: triggerscope

Sample to trigger on (-1 for end of acquisition) — Offset into scope acquisition at
which to trigger
0 (default) | integer

Number of samples into the trigger scope acquisition on which to trigger this scope. If the value is
-1, trigger at the end of acquisition.

This parameter becomes visible when you set Trigger mode to Scope triggering.

Programmatic Use
Block Parameter: triggersample

Target Scope Parameters
Target scopes require the common scope parameters and also the following parameters.

Scope mode — Display mode for target scope
Graphical redraw (default) | Numerical | Graphical rolling | Graphical sliding

* Numerical — Displays the data numerically. The scope acquires Number of samples values
before updating the output.

* Graphical redraw — Displays a cycle of data continuously without scrolling (refreshing the
entire plot). The scope acquires Number of samples values before redrawing the graph.

* Graphical rolling — Displays running data continuously scrolling from left to right across the
scope (similar behavior to oscilloscopes).

* Graphical sliding — The legacy value 'sliding' will be removed in a future release. It
behaves like value rolling.

If the scope mode is Numerical, the scope block adds a Numerical format text box to the dialog
box, set by default to %15.6f.

Programmatic Use
Block Parameter: viewmode

Numerical format — Define the display format for the data
'%15.6T"' (default) | ' [LabelN] [%width.precisiontype] [LabelX]"

Use this box to define the display format for the data.

* LabelN (optional) — Signal label. You can use a different label for each signal or the same label
for each signal.

* width (optional) — Minimum number of characters to offset from the left of the screen or label.

* precision (optional) — Maximum number of decimal points for the signal value. For a whole
integer signal value, enter 0 for the precision value.

+ type — Data type for the signal format, one of:

32-19

32 Target Management, Display, and Logging Blocks

32-20

Type Description

%e or SE Exponential format using e or E

%T Floating point

%g Signed value printed in f or e format depending on which is smaller
%G Signed value printed in f or E format depending on which is smaller

* LabelX (optional) — Second label for the signal. You can use a different label for each signal or
the same label for each signal.

You can have multiple Numerical format entries, separated by a comma. You can enter as many
format entries as you have signals for the scope. The entries apply to the signals in order. If the
format contains fewer label entries than signals, the default format ('%15.6T ') applies to the
remaining signals. If the format contains more entries than signals, the unmatched entries are
ignored.

Delimit each entry with a comma and surround the entire character vector with a pair of quotes:

'Startl %15.6f endl,Start2 %15.6f end2'

The default format is '%15.6f"', a floating point format without a label.

Programmatic Use
Block Parameter: formatstr

Grid — Displays grid lines on the scope
‘on' (default) | ‘off"'

Select this check box to display grid lines on the scope. This parameter is only applicable for target
scopes and scope modes of type Graphical redraw and Graphical rolling.

Programmatic Use
Block Parameter: grid

Y-Axis limits — Define upper and lower limits of Y-axis
[0,0] (default) | [numeric, numeric]

Enter a row vector with two elements where the first element is the lower limit of the y-axis and the
second element is the upper limit. If you enter 0 for both elements, then the scaling is set to auto.
This parameter only applies to target scopes that were set to the scope modes Graphical redraw
or Graphical rolling.

Programmatic Use
Block Parameter: ylimits

File Scope Parameters
File scopes require the common scope parameters and also the following parameters.

Filename — Name of file on target computer
C:\data.dat (default) | text

Enter a name for the file to contain the signal data. By default, the target computer writes the signal
data to a file named C:\data.dat.

If you select the Dynamic file name enabled and AutoRestart check boxes, configure Filename to
increment dynamically. Use a base file name, an underscore (_), and a < > specifier. Within the

Scope

specifier, enter one to eight % symbols. Each symbol % represents a decimal location in the file name.
The specifier can appear anywhere in the file name. For example, the following value for Filename,
C:\work\file <%%%>.dat creates file names with the following pattern:

file 001.dat

file 002.dat

file 003.dat

The last file name of this series is file 999.dat. If the function is still logging data when the last
file name reaches its maximum size, the function overwrites the first file name in the series.

A fully qualified file name in the operating system on the target computer can have a maximum of 260
characters. If the file name is longer than eight-dot-three format (eight character file name, period,
three character extension), the operating system represents the file name in truncated form (for
example, six characters followed by '~1'). MATLAB commands can access the file using the fully
qualified file name or the truncated representation of the name. Some block parameters, such as the
Scope block filename parameter, require 8.3 format for the file name.

Programmatic Use
Block Parameter: filename

Mode — File access table update policy
Lazy (default) | Commit

Both Lazy and Commit mode open a file, write signal data to the file, then close that file at the end of
the session. The difference is in when the block updates the file access table (FAT) entry for the file.

* Lazy — The block updates the FAT entry only when the file is closed and not during each file write
operation. This mode is faster than Commit mode. However, if the system crashes before the file is
closed, the file system does not know the actual file size (the file contents, however, are intact).

* Commit — The block updates the FAT entry for the file with each file write operation. This mode is
slower than Lazy mode, but the file system maintains the actual file size.

You cannot read a file that was written during real-time execution until execution has completed.

Programmatic Use

Block Parameter: mode

WriteSize — Size, in bytes, of data chunks that the block writes
512 (default) | unsigned integer

This parameter specifies that a memory buffer, of length Number of samples, writes data to the file
in WriteSize chunks. By default, this parameter is 512 bytes, which is the typical disk sector size.
Using a block size that is the same as the disk sector size provides better performance.

Programmatic Use
Block Parameter: writesize

AutoRestart — Restart capture after acquisition
'off"' (default) | 'on'

The AutoRestart setting works with the Number of samples parameter.

» Autorestart is on — When the scope triggers, the scope starts collecting data into a memory
buffer. A background task examines the buffer and writes data to the disk continuously, appending
new data to the end of the file. When the scope reaches the number of samples that you specified,

32-21

32 Target Management, Display, and Logging Blocks

32-22

it starts collecting data again, overwriting the memory buffer. If the background task cannot keep
pace with data collection, data can be lost.

* Autorestart is off — When the scope triggers, the scope starts collecting data into a memory
buffer. It stops when it has collected the number of samples that you specified. A background task
examines the buffer and writes data to the disk continuously, appending the new data to the end of
the file.

Selecting this parameter makes visible the Dynamic file name enabled and Max file size in bytes
(multiple of WriteSize) parameters.

Programmatic Use
Block Parameter: autorestart

Dynamic file name enabled — Dynamically create multiple log files
"off' (default) | 'on'

Select this check box to enable the ability dynamically to create multiple log files for file scopes.

To enable this parameter, select the AutoRestart check box. When you enable Dynamic file name
enabled, configure Filename to create incrementally numbered file names for the multiple log files.
Failure to do so causes an error when you try to start the scope.

You can enable the creation of up to 99999999 files (<%%%%%%%%>.dat). The length of a file name,
including the specifier, cannot exceed eight characters.

This parameter becomes visible when you select the AutoRestart parameter.

Programmatic Use
Block Parameter: dynamicfilemode

Max file size in bytes (multiple of WriteSize) — Maximum size of output file
536870912 (default) | integer

When the log file reaches Max file size in bytes (multiple of WriteSize) in size, the software
creates the next numbered file name in the series. It continues logging data to that file, up until the
highest log file number you have specified. If the software cannot create additional log files, it
overwrites the first log file.

Dependency

This parameter becomes visible when you select the AutoRestart parameter.

Programmatic Use
Block Parameter: maxwritefilesize

See Also

Topics

“Signal Tracing Basics”

“Simulink Real-Time Scope Usage”

“Target Scope Usage”

“Host Scope Usage”

“File Scope Usage”

“Troubleshoot Signals Not Accessible by Name”
“File System Basics”

Scope

“Configure Real-Time Target Scope Blocks”
“Configure Real-Time Host Scope Blocks”
“Configure Real-Time File Scope Blocks”

Introduced in R2014a

32-23

32 Target Management, Display, and Logging Blocks

32-24

Set Overload Counter

Set current CPU overload count
Library: Simulink Real-Time / Target Management / Execution

Parameters 3

Sat
Overload Counter

Description

This block enables you to adjust the CPU overload count.

Parameters

Sample time — Sample time
-1 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: ts

See Also
Get Overload Counter

Topics
“CPU Overload Options”

Introduced in R2014a

Task Execution Time

Task Execution Time

Task execution time (TET), in seconds
Library: Simulink Real-Time / Target Management / Execution
Parameters

TET b

Description
This block outputs the task execution time (TET) in seconds.

To visualize the TET while your real-time application is running, connect the output of this block to a
Simulink Real-Time Scope block.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate time step.
For a multirate model, use the profiler to find out what the execution time is for each rate.

Parameters

Sample time — Sample time
0.001 (default)

Enter the base sample time or a multiple of the base sample time (-1 means sample time is
inherited).

Programmatic Use
Block Parameter: ts

See Also

Introduced in R2014a

32-25

32 Target Management, Display, and Logging Blocks

32-26

Time Stamp Delta

Time stamp delta

Library: Simulink Real-Time / Target Management / Target
Information A

Nz

Time Stamp Delta b

Description

This block takes as input two uint32 vectors of length 2. Two separate Elapsed Time blocks can
supply each vector. The output is a scalar double that contains the difference between the two
timestamps, in nanoseconds.

To compute the difference in nanoseconds between two vector time values, pass both time values to

the Time Stamp Delta block. To convert a single time value to nanoseconds, pass one time value to a
Time Stamp Delta block and ground the other input.

Ports
Input

t1 — First target computer time
[00000000 FFFFFFFF]

The time value is in an internal format.

Data Types: [uint32 uint32]

t2 — Second target computer time
[00000000 FFFFFFFF]

The time value is in an internal format.

Data Types: [uint32 uint32]
Output Arguments

Delta — Difference between time values
double

Difference in nanoseconds between t1 and t2.

See Also
Elapsed Time

Introduced in R2006a

To Target

To Target

Send data to target computer
Library: Simulink Real-Time / Displays and Logging

) black
parameter

Description

This block behaves as a sink. The main purpose of this block is to write a new value to a specific
parameter on the real-time application.

You can use the function SimulinkRealTime.utils.createInstrumentationModel to create an
instrumentation model using the To Target and From Target blocks.

The To Target block runs as a non-real-time Simulink block on the development computer. It is
asynchronous to the real-time model running on the target computer. If the To Target block receives
continuously changing input, two parameter updates can be sent to the target computer before the
next sample time of the real-time application. In this case, the real-time application only uses the last
parameter value received. Conversely, it is also possible for one or more sample times to elapse on
the target computer before the To Target block sends the next parameter value.

In either case, the To Target block only sends parameter values to the target computer when there is
a change (for example, the input of the To Target block changes).

Note The use of To Target blocks requires a connection between the development and target
computers. Without a connection, operations such as opening a model or copying these blocks take
longer than normal.

Some notes on the To Target block behavior:

* To highlight the Simulink model block referenced by a To Target block, double-click the block.
» If the To Target block has not yet been configured, double-clicking the block does nothing.
* To edit the To Target block parameters, right-click the block and select Mask Parameters.

Parameters

Target application name — Name of real-time application
"' (default)

The function SimulinkRealTime.utils.createInstrumentationModel automatically enters a
name entry for this parameter. It is the same name as the Simulink model that Simulink Real-Time
uses to build the real-time application.

Programmatic Use
Block Parameter: appname

32-27

32 Target Management, Display, and Logging Blocks

Path to block in real-time application — Path of real-time application
block (default)

The function SimulinkRealTime.utils.createInstrumentationModel automatically enters an
entry for this parameter and uses it to access the block identifier.

Programmatic Use
Block Parameter: blockpath

Parameter name — Name of parameter
parameter (default)

The function SimulinkRealTime.utils.createInstrumentationModel automatically defines
the entry for this parameter and enters it. Note that the parameter name might not match the label
name for that parameter in the Block Parameters dialog box. For example, the label name for a gain
block is Constant value, but the parameter name is Value.

Programmatic Use
Block Parameter: paramname

Use default target PC — Download to default target computer
on (default) | of f

Selecting this option directs Simulink Coder to build and download the real-time application to the
default target computer. This assumes that you configured a default target computer through the
Simulink Real-Time Explorer (see “PCI Bus Ethernet Setup” if you have not). By default, this check
box is selected.

Programmatic Use
Block Parameter: isdefault

Specify target name — Name of target computer
not set (default)

If you deselect the Use default target PC check box, this field is displayed. Enter the name of the
configured target computer.

Programmatic Use
Block Parameter: targetname

See Also
SimulinkRealTime.utils.createInstrumentationModel

Topics
“Creating a Custom Graphical Interface”

Introduced in R2014a

32-28

	Introduction, RS-232
	Simulink Real-Time I/O Library
	I/O Driver Blocks
	Speedgoat I/O Modules
	Third-Party Driver Blocks
	I/O Driver Block Library
	Memory-Mapped Devices
	ISA Bus I/O Devices
	PCI Bus I/O Devices
	Simulink Real-Time I/O Driver Structures
	Simulink Real-Time Support and SimState
	PWM and FM Driver Block Notes
	Driver Block Documentation

	Add I/O Blocks to Simulink Model
	Defining I/O Block Parameters

	Serial Communications Support
	RS-232 Serial Communication
	Serial Connections for RS-232

	RS-232 Composite Drivers
	Adding RS-232 Blocks
	Building and Running the Real-Time Application
	Simulink Real-Time RS-232 Reference

	Serial Communications Support: Blocks
	ASCII Encode
	ASCII Decode
	ASCII Decode V2
	FIFO Read
	FIFO Write
	FIFO Read HDRS
	FIFO Read Binary
	Modem Control
	Modem Status
	RS-232 Send/Receive
	RS-232 Send/Receive FIFO
	RS232 State

	Serial Communications Support: Internal Blocks
	RS-232 Enable TX Interrupt
	RS-232 Filter Interrupt Reason
	RS-232 Read Hardware FIFO
	RS-232 Read Interrupt Status
	RS-232 Setup
	RS-232 Write Hardware FIFO

	CAN, Encoders, Ethernet, EtherCAT
	CAN Utility Blocks
	CAN Pack
	CAN Unpack
	CAN FD Pack
	CAN FD Unpack

	Model-Based Ethernet Communications Support
	Model-Based Ethernet Communications
	What Is Model-Based Ethernet Communications?
	Ethernet Hardware
	PCI Bus and Slot Numbers
	MAC Addresses
	Network Buffer Pointers
	Filter Type and Filter Address Blocks
	Execution Priority
	Simulink Real-Time Ethernet Block Library

	Ethernet Blocks
	Real-Time Ethernet Configuration
	Create Ethernet Packet
	Ethernet Init
	Ethernet Rx
	Ethernet Tx
	Extract Ethernet Packet
	Filter Address
	Filter Type
	Header Extract

	Network Buffer Library for Model-Based Ethernet Communications Support
	Network Buffer Blocks

	Network Buffer Library Blocks
	Buffer Mngmt
	Chain Size
	Compose
	Extract
	Link
	Manage
	Merge
	Split
	Unlink

	Model-Based EtherCAT Communications Support
	Modeling EtherCAT Networks
	Blocks and Tasks
	Order of Network Events

	Install TwinCAT 3
	Hardware Setup Requirements for TwinCAT 3
	Configure EtherCAT Network with TwinCAT 3
	Scan EtherCAT Network
	Configure EtherCAT Master Node Data
	Export and Save EtherCAT Configuration with TwinCAT 3

	Install EtherCAT Network for Execution
	Configure EtherCAT Master Node Model
	Configure EtherCAT Init Block
	Configure EtherCAT PDO Receive Blocks
	Configure EtherCAT PDO Transmit Blocks
	Configure EtherCAT Model Configuration Parameters

	EtherCAT Distributed Clock Algorithm
	Master Shift Mode
	Bus Shift Mode
	Limitations

	Fixed-Step Size Derivation
	EtherCAT Protocol Mapping
	EtherCAT Configurator Component Mapping
	EtherCAT Data Types
	EtherCAT Init Block DC Error Values
	EtherCAT Error Codes

	EtherCAT Blocks
	EtherCAT Init
	EtherCAT Get Notifications
	EtherCAT PDO Receive
	EtherCAT PDO Transmit
	EtherCAT Get State
	EtherCAT Set State
	EtherCAT Sync SDO Upload
	EtherCAT Sync SDO Download
	EtherCAT Async SDO Upload
	EtherCAT Async SDO Download
	EtherCAT Sync SSC/SoE Upload
	EtherCAT Sync SSC/SoE Download
	EtherCAT Async SSC/SoE Upload
	EtherCAT Async SSC/SoE Download

	TCP, UDP
	Real-Time TCP Communication Support
	TCP Transport Protocol
	Troubleshoot TCP Block Configuration
	What This Issue Means
	Try This Workaround

	TCP Blocks
	IP Config
	TCP Client
	TCP Client Configure
	TCP Receive
	TCP Send
	TCP Server
	TCP Server Configure

	Real-Time UDP Communication Support
	UDP Transport Protocol
	UDP Data Exchange with Shared Ethernet Board
	Data Transferred
	Set Up udpsendreceiveA
	Set Up udpsendreceiveB

	UDP Communication Setup
	UDP and Variable-Size Signals
	Troubleshoot UDP Block Configuration
	What This Issue Means
	Try This Workaround

	Real-Time UDP Blocks
	UDP Configure
	UDP Receive
	UDP Send

	Parallel Ports, PTP, SAE J1939, Shared Memory
	Parallel Ports
	Using Parallel Ports
	Introduction
	Using the Parallel Port as an Interrupt Source
	Using Add-On Parallel Port Boards

	Parallel Port Blocks
	Parallel Port Digital Input
	Parallel Port Digital Input Status Bits
	Parallel Port Digital Output
	Parallel Port Digital Output Control Bits

	Precision Time Protocol
	Precision Time Protocol
	Synchronize Timestamps Across Data-Gathering Network
	Data Acquisition and Data Analysis Example Description
	Data Acquisition Application
	Data Analysis Application

	Troubleshoot Precision Time Protocol Configuration
	What This Issue Means
	Try This Workaround

	Prerequisites, Limitations, and Unsupported Features
	Prerequisites
	Limitations
	Unsupported Features

	Precision Time Protocol Blocks
	IEEE 1588 Real-Time UDP
	IEEE 1588 Ethernet
	IEEE 1588 Read Parameter
	IEEE 1588 Sync Execution
	IEEE 1588 Sync Status
	IEEE 1588 Setup
	IEEE 1588 Adjust Time
	IEEE 1588 Create Message
	IEEE 1588 Process Message
	IEEE 1588 Sync Error
	Adjust Step Size
	Current Step Size
	Real-Time UDP Configuration
	Receive
	Send
	UDP Consume
	UDP Produce
	UDP Rx
	UDP Tx

	SAE J1939
	SAE J1939 Blocks

	SAE J1939 Blocks
	J1939 Network Configuration
	J1939 Node Configuration
	J1939 CAN Transport Layer
	J1939 Receive
	J1939 Transmit

	Shared Memory Support
	Create GE Fanuc Shared Partitions
	Initialize GE Fanuc Shared Nodes
	GE Fanuc Shared Partition Structure
	GE Fanuc Shared Node Initialization Structure
	Board Mode
	Board Interrupts
	Board Node ID

	Create Curtiss-Wright Shared Partitions
	Initialize Curtiss-Wright Shared Nodes
	Curtiss-Wright Shared Partition Structure
	Alignment Examples

	Curtiss-Wright Shared Node Initialization Structure
	Board Mode
	Board Timeout
	Board Data Filter
	Virtual Paging
	Board Interrupts

	Video, XCP
	Video Image Processing
	Process Video Images with Simulink Real-Time
	USB Video Display on Development Computer
	USB Video Display on Target Computer
	Serial Camera Configuration

	Video Blocks
	From USB Video Device
	Image Receive
	Image Transmit
	JPEG Compression
	JPEG Decompression
	USB Video Device List
	Video Display

	XCP Master Mode
	XCP Master Mode

	XCP Blocks
	XCP CAN Transport Layer
	XCP CAN Configuration
	XCP CAN Data Acquisition
	XCP CAN Data Stimulation
	XCP UDP Configuration
	XCP UDP Data Acquisition
	XCP UDP Data Stimulation

	Speedgoat
	Speedgoat Support
	Speedgoat Target Computers and Support
	Speedgoat I/O Hardware
	Speedgoat Communication Protocols

	UEI, Asynchronous Events
	Asynchronous Events
	Asynchronous Event Support
	Adding an Asynchronous Event
	Asynchronous Interrupt Example

	Asynchronous Event: Blocks
	Async IRQ Source

	Logitech
	Logitech Blocks
	Logitech G29 Steering Wheel

	Utility Drivers, Target Management, Displays and Logging
	Utility Blocks
	Bit Packing
	Bit Unpacking
	Byte Packing
	Byte Reversal/Change Endianess
	Byte Unpacking
	Shared Memory Pack
	Shared Memory Unpack

	Target Management, Display, and Logging Blocks
	CPU Temperature
	Current Available Stack Size
	Elapsed Time
	Enable Profiler
	From File
	From Target
	Get Overload Counter
	Minimum Available Stack Size
	Scope
	Set Overload Counter
	Task Execution Time
	Time Stamp Delta
	To Target

